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INFINITE FAMILIES OF CONGRUENCES MODULO 2 FOR
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Ankita Jindal and Nabin Kumar Meher

Abstract. A partition of n is called a t-core partition if none of its hook

number is divisible by t. In 2019, Hirschhorn and Sellers [5] obtained a
parity result for 3-core partition function a3(n). Motivated by this result,

both the authors [8] recently proved that for a non-negative integer α,
a3αm(n) is almost always divisible by an arbitrary power of 2 and 3 and

at(n) is almost always divisible by an arbitrary power of pji , where j is

a fixed positive integer and t = pa1
1 pa2

2 · · · pam
m with primes pi ≥ 5. In

this article, by using Hecke eigenform theory, we obtain infinite families

of congruences and multiplicative identities for a2(n) and a13(n) modulo
2 which generalizes some results of Das [2].

1. Introduction

A partition β = (β1, β2, . . . , βr) of n is a non-increasing sequence of positive
integers whose sum is n and the positive integers βi are called parts of the
partition β. A partition β of n can be represented by the Young diagram [β]
(also known as the Ferrers graph) which consists of the s number of rows such
that the ith row has βi number of dots • and all the rows start in the first
column. An illustration of the Young diagram for β = (β1, β2, . . . , βr) is as
follows.

[β]:=

• • · · · · · · · · · • β1 dots
• • · · · · · · • β2 dots

...
...

• • · · · • βr dots

For 1 ≤ i ⩽ r and 1 ≤ j ≤ βi, the dot of [β] which lies in the ith row and jth

column is denoted by (i, j)th-dot of β. Let β
′

j denote the number of dots in jth

column. The hook number Hi,j of (i, j)th-dot is defined by βi + β
′

j − i− j + 1.
In other words, Hi,j = 1+ h0, where h0 is the sum of the number of dots lying
right to the (i, j)th-dot in the ith row and the number of dots lying below the
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(i, j)th-dot in the jth column. Given a partition β of n, we say that it is a
t-core partition if none of its hook number is divisible by t.

Example 1. The Young diagram of the partition β = (6, 3, 1) of 10 is

•8 •6 •5 •3 •2 •1
•4 •2 •1
•1

where the superscript on each dot represents its hook number. It can be easily
observed that this is a t-core partition of 10 for t = 7 and t ⩾ 9.

Example 2. There are no 3-core partitions of 7. This can be easily verified
by looking at the Young diagram of each partition of 7.

For a positive integer n, let at(n) denote the number of t-core partitions of
n. Its generating function is given by

(1.1)

∞∑
n=0

at(n)q
n =

∞∏
n=1

(1− qtn)t

(1− qn)
=

(qt; qt)t∞
(q; q)∞

,

where (a; q)∞ = (1− a)(1− aq)(1− aq2) · · · .
In [3, Corollary 1], Garvan, Kim, Stanton obtained the congruence

ap(p
jn− δp) ≡ 0 (mod pj),(1.2)

where p ∈ {5, 7, 11}, n, j are positive integers and δp = p2−1
24 . In [4, Proposition

3], Granville and Ono proved similar congruences, namely

a5j (5
jn− δ5,j) ≡ 0 (mod 5j),

a7j (7
jn− δ7,j) ≡ 0 (mod 7⌊

j
2 ⌋+1),

a11j (11
jn− δ11,j) ≡ 0 (mod 11j),

where n, j are positive integers and δp,j ≡ 1
24 (mod pj) for p ∈ {5, 7, 11}.

In 2019, Hirschhorn and Sellers [5] proved a parity result for a3(n), i.e., for
all n ≥ 0,

a3(n) =

{
1 (mod 2) if n = 3r2 + 2r for some integer r,

0 (mod 2) otherwise.

Motivated by this result, both the authors proved that for a non-negative in-
teger α, a3αm(n) is almost always divisible by an arbitrary power of 2 and 3.
Moreover, they also proved that at(n) is almost always divisible by an arbi-

trary power of pji , where j is a fixed positive integer and t = pa1
1 pa2

2 · · · pam
m

with primes pi ≥ 5. In the following theorem, we obtain infinite families of
congruences modulo 2 for a2(n) and a13(n) by using Hecke eigen form theory.

Theorem 1.1. Let k and n be non-negative integers. For each 1 ≤ i ≤ k + 1,
let p1, p2, . . . , pk+1 be prime numbers such that pi ≥ 5. Then for any integer
j ̸≡ 0 (mod pk+1), we have
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(i) a2

(
p21p

2
2 · · · p2k+1n+

p2
1p

2
2···p

2
kpk+1(8j+pk+1)−1

8

)
≡ 0 (mod 2),

(ii) a13
(
104p21p

2
2 · · · p2k+1n+13p21p

2
2 · · · p2kpk+1 (ϵpj+pk+1)−7

)
≡0 (mod 2),

where

ϵp =

{
1 if p ̸≡ 1 (mod 8),

8 if p ≡ 1 (mod 8).

Corollary 1.1. Let n and k be non-negative integers. For a prime p ≥ 5 and
an integer j ̸≡ 0 (mod p), we have

(i) a2

(
p2(k+1)n+ p2k+1j + p2k+2−1

8

)
≡ 0 (mod 2),

(ii) a13
(
104p2k+2n+ 13ϵpp

2k+1j + 13p2k+2 − 7
)
≡ 0 (mod 2).

Furthermore, we prove the following multiplicative formulae for 2-core par-
titions and 13-core partitions modulo 2.

Theorem 1.2. Let k be a positive integer and p be a prime number such that
p ≡ 7 (mod 8). Let r be a non-negative integer such that p divides 8r+7. Then

(i) a2
(
pk+1n+ pr + 7p−1

8

)
≡ (−1)

(
−2
p

)
a2

(
pk−1n+ 8r+7−p

8p

)
(mod 2),

(ii) a13
(
104pk+1n+ 104pr + 91p− 7

)
≡ (−1)

(
−2

p

)
a13

(
104pk−1n+

104r + 91

p
− 7

)
(mod 2).

Corollary 1.2. Let k be a positive integer and p be a prime number such that
p ≡ 7 (mod 8). Then

(i) a2

(
p2kn+ p2k−1

8

)
≡ (−1)

k
(

−2
p

)k

a2(n) (mod 2).

(ii) a13
(
104p2kn+ 13p2k − 7

)
≡ (−1)

k
(

−2
p

)k

a13(104n+ 6) (mod 2).

2. Preliminaries

We recall some basic facts and definition on modular forms. For more details,
we refer to [6, 9]. We start with some matrix groups. We define

Γ := SL2(Z) =
{[

a b
c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}
,

Γ∞ :=

{[
1 n
0 1

]
: n ∈ Z

}
.

For a positive integer N , we define

Γ0(N) :=

{[
a b
c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) :=

{[
a b
c d

]
∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

}
,
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and

Γ(N) :=

{[
a b
c d

]
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
.

A subgroup Γ of SL2(Z) is called a congruence subgroup if it contains Γ(N)
for some positive integer N and the smallest N with this property is called
its level. Note that Γ0(N) and Γ1(N) are congruence subgroups of level N,
whereas SL2(Z) and Γ∞ are congruence subgroups of level 1. The index of
Γ0(N) in Γ is

[Γ : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
,

where p runs over prime divisors of N .
Let H denote the upper half of the complex plane. The group

GL+
2 (R) :=

{[
a b
c d

]
: a, b, c, d ∈ R, ad− bc > 0

}
acts on H by

[
a b
c d

]
z = az+b

cz+d . We identify ∞ with 1
0 and define

[
a b
c d

]
r
s = ar+bs

cr+ds ,

where r
s ∈ Q ∪ {∞}. This gives an action of GL+

2 (R) on the extended half
plane H∗ = H∪Q∪{∞}. Suppose that Γ is a congruence subgroup of SL2(Z).
A cusp of Γ is an equivalence class in P1 = Q ∪ {∞} under the action of Γ.

The group GL+
2 (R) also acts on functions f : H → C. In particular, suppose

that γ =
[
a b
c d

]
∈ GL+

2 (R). If f(z) is a meromorphic function on H and k is an
integer, then define the slash operator |k by

(f |kγ)(z) := (det γ)k/2(cz + d)−kf(γz).

Definition 2.1. Let Γ be a congruence subgroup of level N . A holomorphic
function f : H → C is called a modular form of integer weight k on Γ if the
following hold:

(1) For all z ∈ H and
[
a b
c d

]
∈ Γ,

f

(
az + b

cz + d

)
= (cz + d)kf(z).

(2) If γ ∈ SL2(Z), then (f |kγ)(z) has a Fourier expansion of the form

(f |kγ)(z) :=
∑
n≥0

aγ(n)q
n
N ,

where qN := e2πiz/N .

For a positive integer k, the complex vector space of modular forms of weight
k with respect to a congruence subgroup Γ is denoted by Mk(Γ).
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Definition 2.2 ([9, Definition 1.15]). Let χ be a Dirichlet character modulo
N . We say that a modular form f ∈ Mk(Γ1(N)) has Nebentypus character χ
if

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for all z ∈ H and
[
a b
c d

]
∈ Γ0(N). The space of such modular forms is denoted

by Mk(Γ0(N), χ).

The relevant modular forms for the results obtained in this article arise from
eta-quotients. We recall the Dedekind eta-function η(z) which is defined by

η(z) := q1/24(q; q)∞ = q1/24
∞∏

n=1

(1− qn),(2.1)

where q := e2πiz and z ∈ H. A function f(z) is called an eta-quotient if it is of
the form

f(z) :=
∏
δ|N

η(δz)rδ ,

where N and rδ are integers with N > 0.

Theorem 2.1 ([9, Theorem 1.64]). If f(z) =
∏

δ|N η(δz)rδ is an eta-quotient

such that k = 1
2

∑
δ|N rδ ∈ Z,∑

δ|N

δrδ ≡ 0 (mod 24) and
∑
δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for each
[
a b
c d

]
∈ Γ0(N). Here the character χ is defined by χ(d) :=

(
(−1)ks

d

)
,

where s =
∏

δ|N δrδ .

Theorem 2.2 ([9, Theorem 1.65]). Let c, d and N be positive integers with
d | N and gcd(c, d) = 1. If f is an eta-quotient satisfying the conditions of
Theorem 2.1 for N , then the order of vanishing of f(z) at the cusp c

d is

N

24

∑
δ|N

gcd(d, δ)2rδ

gcd(d, N
d )dδ

.

Suppose that f(z) is an eta-quotient satisfying the conditions of Theorem
2.1 and that the associated weight k is a positive integer. If f(z) is holomorphic
at all of the cusps of Γ0(N), then f(z) ∈ Mk(Γ0(N), χ). Theorem 2.2 gives
the necessary criterion for determining orders of an eta-quotient at cusps. In
the proofs of our results, we use Theorems 2.1 and 2.2 to prove that f(z) ∈
Mk(Γ0(N), χ) for certain eta-quotients f(z) we consider in the sequel.
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We recall the definition of Hecke operators and a few relevant results. Let
m be a positive integer and f(z) =

∑∞
n=0 a(n)q

n ∈ Mk(Γ0(N), χ). Then the
action of Hecke operator Tm on f(z) is defined by

f(z)|Tm :=

∞∑
n=0

 ∑
d | gcd(n,m)

χ(d)dk−1a
(mn

d2

) qn.

In particular, if m = p is a prime, we have

f(z)|Tp :=

∞∑
n=0

(
a(pn) + χ(p)pk−1a

(
n

p

))
qn.

We note that a(n) = 0 unless n is a non-negative integer.

3. Proofs of Theorems 1.1 and 1.2

3.1. Prelude to the proofs

We define

(3.1)

∞∑
n=1

b(n)qn = q(q8; q8)∞(q16; q16)∞ and

∞∑
n=0

c(n)qn := (q; q)3∞.

If p ∤ n, then we set b
(

n
p

)
= 0 and c

(
n
p

)
= 0. We have the following result.

Lemma 3.2. For n ≥ 0 and for a prime p ̸≡ 1 (mod 8), we have

b(pn) = (−1)

(
−2

p

)
b

(
n

p

)
.(3.2)

Further if j ̸≡ 0 (mod p), then

b(p2n+ pj) = 0.(3.3)

Proof. Let p be a prime with p ̸≡ 1 (mod 8). Using (2.1), we note that

∞∑
n=1

b(n)qn = η(8z)η(16z).

By using Theorem 2.1, we obtain that η(8z)η(16z) ∈ S1(Γ0(128),
(−128

•
)
). Thus

η(8z)η(16z) has the Fourier expansion given by

∞∑
n=1

b(n)qn = η(8z)η(16z) = q − q9 − 2q17 + · · · .

Therefore, b(n) = 0 for all n ≥ 0 with n ̸≡ 1 (mod 8). Since η(8z)η(16z) is a
Hecke eigenform, we obtain from [7, Table 1] that

η(8z)η(16z) | Tp =

∞∑
n=1

(
b(pn) +

(
−128

p

)
b

(
n

p

))
qn = λ(p)

∞∑
n=1

b(n)qn.
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Note that
(

−128
p

)
=

(
−2
p

)
. Comparing the coefficients of qn on both sides of

the above equation, we get

(3.4) b(pn) +

(
−2

p

)
b

(
n

p

)
= λ(p)b(n).

Since b(1) = 1 and b( 1p ) = 0, by substituting n = 1 in the above expression, we

get b(p) = λ(p). Further, since b(p) = 0, we obtain that λ(p) = 0. Hence, we
conclude from (3.4) that

(3.5) b(pn) +

(
−2

p

)
b

(
n

p

)
= 0,

which proves (3.2). For j ̸≡ 0 (mod p), replacing n by pn + j in (3.5), we get
b(p2n+ pj) = 0 which proves (3.3). □

Lemma 3.3. For n ≥ 0 and for a prime p ≡ 1 (mod 4), we have

c

(
p2n+

p2 − 1

8

)
= pc(n).(3.6)

If p ∤ n, then

c

(
pn+

p2 − 1

8

)
= 0.(3.7)

Proof. From [1, Page 39, Entry 24(ii)], we have

(q; q)3∞ =

∞∑
n=0

(−1)n(2n+ 1)q
n(n+1)

2 .

Thus

c(n) =

∞∑
k=0

k(k+1)
2 =n

(−1)k(2k + 1) =

∞∑
k=0

(2k+1)2=8n+1

(−1)k(2k + 1).

This implies that

c

(
pn+

p2 − 1

8

)
=

∞∑
k=0

(2k+1)2=8pn+p2

(−1)k(2k + 1).

Note that if (2k+1)2 = 8pn+ p2, then p | (2k+1) and therefore, we can write

2k + 1 = p(2k
′
+ 1) for some positive integer k

′
. Further for such k, we have

k = 2k+1
2 − 1

2 = p(2k
′
+1)

2 − 1
2 = pk

′
+ p−1

2 which gives (−1)k = (−1)k
′

. Hence

c

(
pn+

p2 − 1

8

)
= p

∞∑
k=0

(2k
′
+1)2=8n

p +1

(−1)k
′

(2k
′
+ 1) = pc

(
n

p

)
.
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Replacing n by pn, we obtain (3.6). Also, (3.7) follows since c
(

n
p

)
= 0 if p ∤ n.

This completes the proof. □

We recall the following identity for 13-core partitions obtained by Kuwali
Das.

Lemma 3.4 ([2, Theorem 1]). We have
∞∑

n=0

a13 (104n+ 6) qn ≡ (q; q)∞
(
q2; q2

)
∞ (mod 2).

Lemma 3.5. For j ̸≡ 0 (mod p) and n ≥ 0, we have

a2

(
p2n+ pj +

p2 − 1

8

)
≡ 0 (mod 2),(3.8)

a2

(
p2n+

p2 − 1

8

)
≡ δpa2(n) (mod 2),(3.9)

a13
(
104p2n+ 13p(ϵpj + p)− 7

)
≡ 0 (mod 2),(3.10)

a13
(
104p2n+ 13p2 − 7

)
≡ δpa13(104n+ 6) (mod 2),(3.11)

where

ϵp =

{
1 if p ̸≡ 1 (mod 8),

8 if p ≡ 1 (mod 8),
and δp =

{
(−1)

(
−2
p

)
if p ̸≡ 1 (mod 8),

p if p ≡ 1 (mod 8).

Proof. We consider the two cases p ̸≡ 1 (mod 8) and p ≡ 1 (mod 8) separately
as follows.
Case 1: p ̸≡ 1 (mod 8).
From (1.1), we have

∞∑
n=0

a2(n)q
n ≡ (q2; q2)2∞

(q; q)∞
≡ (q; q)∞(q2; q2)∞ (mod 2).

Thus using Lemma 3.4, we have
∞∑

n=0

a2(n)q
8n+1 ≡

∞∑
n=0

a13(104n+ 6)q8n+1(3.12)

≡ q(q8; q8)∞(q16; q16)∞ (mod 2).

From (3.1) and (3.12), we get

(3.13) a2(n) ≡ a13(104n+ 6) ≡ b(8n+ 1) (mod 2).

Let r ̸≡ 0 (mod p). From (3.3), we have

b(p2n+ pr) = 0.

Replacing n by 8n− pr + 1, we obtain

b(8p2n− p3r + p2 + pr) = 0.
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Note that 8p2n− p3r+ p2 + pr = 8(p2n− pr p2−1
8 + p2−1

8 )+ 1. Therefore, using
(3.13), we obtain

a2

(
p2n− pr

p2 − 1

8
+

p2 − 1

8

)
(3.14)

≡ a13
(
104p2n− 13pr(p2 − 1) + 13p2 − 7

)
≡ 0 (mod 2).

Since gcd(p
2−1
8 , p) = 1 and gcd(p2 − 1, p) = 1, when r runs over a residue

system excluding the multiples of p, so do −r(p2−1)
8 and −r(p2 − 1). Thus for

j ̸≡ 0 (mod p), (3.14) can be written as

a2

(
p2n+ pj +

p2 − 1

8

)
≡ 0 (mod 2)

and

a13
(
104p2n+ 13pj + 13p2 − 7

)
≡ 0 (mod 2).

This proves (3.8) and (3.10) in the case of p ̸≡ 1 (mod 8).
Next, replacing n by 8pn+ p in (3.2), we obtain

(3.15) b(8p2n+ p2) = (−1)

(
−2

p

)
b (8n+ 1) .

Note that 8p2n+ p2 = 8(p2n+ p2−1
8 ) + 1. Therefore, using (3.13) in (3.15), we

get

a2

(
p2n+

p2 − 1

8

)
≡ (−1)

(
−2

p

)
a2(n) (mod 2)

and

a13
(
104p2n+ 13p2 − 7

)
≡ (−1)

(
−2

p

)
a13 (104n+ 6) (mod 2),

which proves (3.9) and (3.11) in the case of p ̸≡ 1 (mod 8).
Case 2: p ≡ 1 (mod 8).
From (1.1), we have

(3.16)

∞∑
n=0

a2(n)q
n ≡ (q2; q2)2∞

(q; q)∞
≡ (q; q)3∞ (mod 2).

From Lemma 3.4, we have

(3.17)

∞∑
n=0

a13(104n+ 6)qn ≡ (q; q)∞(q2; q2)∞ ≡ (q; q)3∞ (mod 2).

Invoking (3.1), (3.16) and (3.17), we have

(3.18) a2(n) ≡ a13(104n+ 6) ≡ c(n) (mod 2).



1082 A. JINDAL AND N. K. MEHER

If p ∤ n, then from (3.7) and (3.18), we get

a2

(
pn+

p2 − 1

8

)
≡ a13

(
104pn+ 13p2 − 7

)
≡ c

(
pn+

p2 − 1

8

)
≡ 0 (mod 2).

Next replacing n by pn+ j for j ̸≡ 0 (mod p), we obtain

a2

(
p2n+ pj +

p2 − 1

8

)
≡ a13

(
104p2n+ 104pj + 13p2 − 7

)
≡ 0 (mod 2),

which proves (3.8) and (3.10) in the case of p ≡ 1 (mod 8).
Next using (3.6) and (3.18), we get

a2

(
p2n+

p2 − 1

8

)
≡ a13

(
104p2n+ 13p2 − 7

)
≡ c

(
p2n+

p2 − 1

8

)
≡ pc(n) ≡ pa2(n) ≡ pa13(104n+ 6) (mod 2),

which proves (3.9) and (3.11) in the case of p ≡ 1 (mod 8). □

3.6. Proof of Theorem 1.1(i)

For 1 ≤ i ≤ k − 1, we note that

p2i p
2
i+1 · · · p2kn+

p2i p
2
i+1 · · · p2k − 1

8

= p2i

(
p2i+1 · · · p2kn+

p2i+1 · · · p2k − 1

8

)
+

p2i − 1

8
.

Thus, for 1 ≤ i ≤ k − 1, using (3.9) for p = pi, we have

a2

(
p2i p

2
i+1 · · · p2kn+

p2i p
2
i+1 · · · p2k − 1

8

)
≡ δpia2

(
p2i+1 · · · p2kn+

p2i+1 · · · p2k − 1

8

)
(mod 2).

Also from (3.9), we have

a2

(
p2kn+

p2k − 1

8

)
≡ δpk

a2(n) (mod 2).

Therefore, from the congruences in the above two displays, we get

a2

(
p21p

2
2 · · · p2kn+

p21p
2
2 · · · p2k − 1

8

)
≡ δp1δp2 · · · δpk

a2(n) (mod 2).

Replacing n by p2k+1n+
pk+1(8j+pk+1)−1

8 in the above expression and then using
(3.8) for p = pk+1, we get

a2

(
p21p

2
2 · · · p2kp2k+1n+

p21p
2
2 · · · p2kpk+1(8j + pk+1)− 1

8

)
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≡ δp1
δp2

· · · δpk
a2

(
p2k+1n+ pk+1j +

p2k+1 − 1

8

)
≡ 0 (mod 2),

when j ̸≡ 0 (mod pk+1). This completes the proof of Theorem 1.1(i).

3.7. Proof of Theorem 1.1(ii)

The proof is similar to the proof of Theorem 1.1(i). For 1 ≤ i ≤ k − 1, we
note that

104p2i p
2
i+1 · · · p2kn+ 13p2i p

2
i+1 · · · p2k − 7

= 104p2i

(
p2i+1 · · · p2kn+

p2i+1 · · · p2k − 1

8

)
+ 13p2i − 7.

Thus, for 1 ≤ i ≤ k − 1, (3.11) implies

a13(104p
2
i p

2
i+1 · · · p2kn+ 13p2i p

2
i+1 · · · p2k − 7)

≡ δpia13

(
104

(
p2i+1 · · · p2kn+

p2i+1 · · · p2k − 1

8

)
+ 6

)
≡ δpi

a13(104p
2
i+1 · · · p2kn+ 13p2i+1 · · · p2k − 7) (mod 2).

Also from (3.11), we have

a13
(
104p2kn+ 13p2k − 7

)
≡ δpk

a13(104n+ 6) (mod 2).

Therefore, from the above two congruences, we get

a13(104p
2
1p

2
2 · · · p2kn+13p21p

2
2 · · · p2k − 7) ≡ δp1δp2 · · · δpk

a13(104n+6) (mod 2).

Replacing n by p2k+1n +
pk+1(ϵpk+1

j+pk+1)−1

8 in the above expression and then
using (3.10), we get

a13(104p
2
1p

2
2 · · · p2kp2k+1n+ 13p21p

2
2 · · · p2kpk+1(ϵpk+1

j + pk+1)− 7)

≡ δp1δp2 · · · δpk
a13(104p

2
k+1n+ 13(pk+1(ϵpk+1

j + pk+1)− 1) + 6)

≡ δp1
δp2

· · · δpk
a13(104p

2
k+1n+ 13(pk+1(ϵpk+1

j + pk+1))− 7)

≡ 0 (mod 2),

when j ̸≡ 0 (mod pk+1). This completes the proof of Theorem 1.1(ii).

3.8. Proof of Theorem 1.2

For any prime p ≡ 7 (mod 8), we get from (3.2) that

b(pn) = (−1)

(
−2

p

)
b

(
n

p

)
.

Let r ̸≡ 0 (mod p). Replacing n by 8(pkn+ r) + 7, we obtain

b(8(pk+1n+ pr) + 7p) = (−1)

(
−2

p

)
b

(
8(pkn+ r) + 7

p

)
,
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which can be rewritten as

b

(
8

(
pk+1n+ pr +

7p− 1

8

)
+ 1

)
(3.19)

= (−1)

(
−2

p

)
b

(
8

(
pk−1n+

8r + 7− p

8p

)
+ 1

)
.

We note here that 7p−1
8 and 8r+7−p

8p are integers. Therefore, using (3.13) and

(3.19), we get

a2

(
pk+1n+ pr +

7p− 1

8

)
(3.20)

≡ (−1)

(
−2

p

)
a2

(
pk−1n+

8r + 7− p

8p

)
(mod 2),

and

a13
(
104pk+1n+ 104pr + 91p− 7

)
(3.21)

≡ (−1)

(
−2

p

)
a13

(
104pk−1n+

104r + 91

p
− 7

)
(mod 2).

3.9. Proof of Corollary 1.2

Let p be a prime such that p ≡ 7 (mod 8). Choose a non negative integer r
such that 8r + 7 = p2k−1. Replacing k by 2k − 1 in (3.20), we obtain

a2

(
p2kn+

p2k − 1

8

)
≡ (−1)

(
−2

p

)
a2

(
p2k−2n+

p2k−2 − 1

8

)
≡ · · · ≡ (−1)

k

(
−2

p

)k

a2(n) (mod 2).

Replacing k by 2k − 1 in (3.21), we obtain

a13
(
104p2kn+ 13p2k − 7

)
≡ (−1)

(
−2

p

)
a13

(
104p2k−2n+ 13p2k−2 − 7

)
≡ · · · ≡ (−1)

k

(
−2

p

)k

a13(104n+ 6) (mod 2).
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