CONTINUUM-WISE EXPANSIVENESS FOR C^{1} GENERIC VECTOR FIELDS

Manseob Lee

Abstract

It is shown that every continuum-wise expansive C^{1} generic vector field X on a compact connected smooth manifold M satisfies Axiom A and has no cycles, and every continuum-wise expansive homoclinic class of a C^{1} generic vector field X on a compact connected smooth manifold M is hyperbolic. Moreover, every continuum-wise expansive C^{1} generic divergence-free vector field X on a compact connected smooth manifold M is Anosov.

1. Introduction

Utz [37] introduced a concept in dynamical systems that is called expansiveness. Roughly speaking, expansiveness implies that two orbits cannot stay close to each other under the iteration of the system. Later, Kato [13] introduced a notion generalizing the usual concept of expansiveness that is called continuum-wise expansiveness. These concepts have been studied in the context of hyperbolic systems. Indeed, for a diffeomorphism f on a compact smooth manifold M, Mañé [26] proved that if f belongs to the C^{1}-interior of the set of expansive diffeomorphisms, then f is quasi-Anosov, that is, if there is a nonzero vector in the tangent space, then the tangent space is unbounded. Sakai [32] proved that if a diffeomorphism f belongs to the C^{1}-interior of the set of continuum-wise expansive diffeomorphisms, then f is quasi-Anosov. Arbieto [1] proved that every expansive C^{1} generic diffeomorphism f on a compact connected smooth manifold M satisfies Axiom A and has no cycles. Lee [20] proved that every continuum-wise expansive C^{1} generic diffeomorphism f on a compact connected smooth manifold M satisfies Axiom A and has no cycles. If a diffeomorphism f satisfies Axiom A and has cycles, then by [36], the nonwandering set $\Omega(f)$ admits a disjoint union of transitive invariant closed sets, where these sets are homoclinic classes. To determine whether such classes are

[^0]hyperbolic under some dynamical assumption is an important problem. Indeed, in several studies $[9,15,17,19,21-25,30,31,33,34,39]$, it was shown that if a homoclinic class is C^{1} expansive in various senses (e.g., robustly, persistently, stably, or generic), then it is hyperbolic. In particular, Das, Lee, and Lee [9] proved that if a homoclinic class is C^{1} robustly continuum-wise expansive and satisfies the chain condition, then it is hyperbolic. Yang and Gan [39] proved that every expansive homoclinic class of C^{1} generic diffeomorphisms is hyperbolic. Lee [19] proved that every continuum-wise expansive homoclinic class of C^{1} generic diffeomorphisms is hyperbolic.

In this study, the previously mentioned results on continuum-wise expansive diffeomorphisms are extended to vector fields.

The paper is organized as follows. In Section 2, basic notions as well as Theorems A and B are introduced. In Section 3, Theorem A is proved. In the proof, we use a notion that is called ϵ-periodic curve and a result by Arbieto, Cordeiro, and Pacifico [2]. In Section 4, Theorem B is proved. In the proof, we do not use local maximality, and we show that every continuum-wise expansive C^{1} generic vector field X on a compact connected smooth manifold M is hyperbolic. Finally, in Section 5, divergence-free vector fields are studied.

2. Basic notions and theorems

2.1. Continuum-wise expansive vector fields

Throughout this paper, we assume that M is a compact connected $n(\geq 3)$ dimensional manifold without boundary, and let $X \in \mathfrak{X}(M)$. The flow of X will be denoted by $X^{t}, t \in \mathbb{R}$. A point $x \in M$ is a singular point of X if $X^{t}(x)=x$ for all $t \in \mathbb{R}$. $\operatorname{Sing}(X)$ denotes the set of all singular points of X. A point $x \in M$ is regular if $x \notin \operatorname{Sing}(X)$. A point $p \in M$ is periodic if there is $\pi(p)>0$ such that $X^{\pi(p)}(p)=p$, where $\pi(p)$ is the prime period of p. Let $\operatorname{Per}(X)$ be the set of all closed orbits of $X . \operatorname{Let} \operatorname{Crit}(X)=\operatorname{Sing}(X) \cup \operatorname{Per}(X)$. It is clear that $\operatorname{Crit}(X) \subset \Omega(X)$, where $\Omega(X)$ is the set of all nonwandering points of X. Following Utz [37], Bowen and Walters [8] introduced a concept of expansiveness for vector fields.

A closed X^{t}-invariant set $\Lambda \subset M$ is expansive for $X \in \mathfrak{X}(M)$ if for every $\epsilon>0$ there are $\delta>0$ and an increasing homeomorphism $h: \mathbb{R} \rightarrow \mathbb{R}$ with $h(0)=0$ such that for any $x, y \in \Lambda$, if $d\left(X^{t}(x), X^{h(t)}(y)\right) \leq \delta$ for all $t \in \mathbb{R}$, then $y \in X^{(-\epsilon, \epsilon)}(x)$. If $\Lambda=M$, then the vector field X is called expansive. Bowen and Walters [8] proved that if a vector field X is expansive, then every $\sigma \in \operatorname{Sing}(X)$ is isolated. Oka [29, Lemma 2] showed that if a vector field X is expansive, then $\operatorname{Sing}(X)=\emptyset$.

A point $\sigma \in \operatorname{Sing}(X)$ is hyperbolic if the eigenvalues of the derivative $(D X(\sigma))$ of the vector field at σ have a real part differs from zero.

A closed orbit $\gamma=\operatorname{Orb}(p)$ is hyperbolic if the eigenvalues of the derivative $\left(D X^{\pi(p)}(p)\right)$ of diffeomorphism $X^{\pi(p)}$ are all different from one, where $\pi(p)$ is the period of p.

A compact invariant set Λ of X is called hyperbolic if there exist constants $C>0, \lambda>0$ and a splitting $T_{x} M=E_{x}^{s} \oplus F(x) \oplus E_{x}^{u}$ such that
(a) the tangent flow $D X^{t}$ is the invariant continuous splitting,
(b) (C, λ)-contracting, that is, for all $t>0$ and $x \in \Lambda$,

$$
\left\|\left.D X^{t}\right|_{E_{x}^{s}}\right\| \leq C e^{-\lambda t} \text { and }
$$

(c) (C, λ)-expanding, that is, for all $t>0$ and $x \in \Lambda$,

$$
m\left(\left.D X^{-t}\right|_{E_{x}^{u}}\right) \leq C e^{-\lambda t}
$$

where $F(x)$ is the subspace generated by $X(x)$ and $m(O)=\inf _{\|v\|=1}\|O(v)\|$ is the minimum norm of a linear operator O.

A point $x \in M$ is a non-wandering point of X if for every $t>0$ and every neighborhood U of x, there is $t_{1}>t$ such that $X^{t_{1}}(U) \cap U \neq \emptyset$. A vector field X satisfies Axiom A if the nonwandering set $\Omega(X)$ is hyperbolic and is the closure of $\operatorname{Crit}(X)$.

For an Axiom A vector field $X \in \mathfrak{X}(M), X$ satisfies the quasi-transversality condition if $T_{x} W^{s}(x) \cap T_{x} W^{u}(x)=\overrightarrow{O_{x}}$ for $x \in M$, where $W^{s}(x)$ is the stable set of x and $W^{u}(x)$ is the unstable set of x. Moriyasu, Sakai, and Sun [28] proved that if a vector field X belongs to the C^{1} interior of the set of all expansive vector fields, then X satisfies Axiom A and the quasi-transversality condition. This is an extension of a result by Mañé [26]. Lee [18] proved that if a vector field X belongs to the C^{1} interior of the set of all continuum-wise expansive vector fields, then X satisfies Axiom A and the quasi-transversality condition. This is a generalization of a result by Moriyasu, Sakai, and Sun [28].

An increasing homeomorphism $h: \mathbb{R} \rightarrow \mathbb{R}$ with $h(0)=0$ is called a reparametrization. $\operatorname{Hom}(\mathbb{R})$ denotes the set of all homeomorphisms of \mathbb{R}. Let $\operatorname{Rep}(\mathbb{R})$ $=\{h \in \operatorname{Hom}(\mathbb{R}): h$ is a reparametrization $\}$. If A is a subset of $M, C^{0}(A, \mathbb{R})$ denotes the set of real continuous maps defined on A. Let $\mathcal{H}(A)=\{h: A \rightarrow$ $\operatorname{Rep}(\mathbb{R})$: there is $x_{h} \in A$ with $h\left(x_{h}\right)=i d$ and $h(\cdot)(t) \in C^{0}(A, \mathbb{R})$ for all $\left.t \in \mathbb{R}\right\}$, and if $t \in \mathbb{R}$ and $h \in \mathcal{H}(A)$, let

$$
\mathcal{X}_{h}^{t}(A)=\left\{X^{h(x)(t)}(x): x \in A\right\}
$$

For convenience, we set $h(x)(t)=h_{x}(t)$ for all $x \in A$ and $t \in \mathbb{R}$. Let Λ be a closed subset of M. A set A is called nondegenerate if it is not reduced to a single point. $A \subset M$ is called a continuum if it is a compact connected nondegenerate subset of M. Recently, Arbieto et al. [2] introduced the following definition, which is a vector field analogue of continuum-wise expansiveness.

Definition 2.1. Let $X \in \mathfrak{X}(M)$. X is called continuum-wise expansive if for any $\epsilon>0$ there is $\delta>0$ such that if $A \subset M$ is a continuum and $h \in \mathcal{H}(A)$ satisfies

$$
\operatorname{diam}\left(\mathcal{X}_{h}^{t}(A)\right)<\delta \text { for all } t \in \mathbb{R}
$$

then $A \subset X^{(-\epsilon, \epsilon)}(x)$ for some $x \in A$.

A subset $\mathcal{G} \subset \mathfrak{X}(M)$ is called residual if it contains a countable intersection of open and dense subsets of $\mathfrak{X}(M)$. A dynamic property is called C^{1} generic if it holds in a residual subset of $\mathfrak{X}(M)$.

In the paper, we write "for C^{1} generic $X \in \mathfrak{X}(M)$ " means that there is an open and dense subset $\mathcal{R} \subset \mathfrak{X}(M)$ such that for any $X \in \mathcal{R}, \ldots$.
$X \in \mathscr{X}(M)$ is called star if there is a C^{1} neighborhood $\mathcal{U}(X)$ of X such that for any $Y \in \mathcal{U}(X)$, every $\gamma \in \operatorname{Crit}(X)$ is hyperbolic. $\mathcal{G}^{*}(M)$ denotes the set of all star vector fields. Senos [35] proved that for C^{1} generic $X \in \mathfrak{X}(M)$, if X is expansive, then $X \in \mathcal{G}^{*}(M)$, and thus it satisfies Axiom A and has no cycles. In the present study, the following extension will be proved.
Theorem A. For C^{1} generic $X \in \mathfrak{X}(M)$, if X is continuum-wise expansive, then it is Axiom A without cycles.

To prove Theorem A, we will show that $\operatorname{Sing}(X)=\emptyset$, which was proved by Arbieto, Cordeiro, and Pacifico [2]. Using the concept of ϵ-periodic curves, we will show that X is weak star, that is, there is a C^{1} neighborhood $\mathcal{U}(X)$ of X such that every $\gamma \in \operatorname{Per}(Y)$ is hyperbolic for any $Y \in \mathcal{U}(X)$. The proof follows using the result by Gan and Wen [11].

2.2. Continuum-wise expansive homocinic classes vector fields

For any hyperbolic $\eta, \gamma \in \operatorname{Per}(X)$, the notation $\eta \sim \gamma$ implies that

$$
W^{s}(\eta) \pitchfork W^{u}(\gamma) \neq \emptyset \text { and } W^{u}(\eta) \pitchfork W^{s}(\gamma) \neq \emptyset
$$

Let $H(\gamma, X)=\overline{\{\eta \in \operatorname{Per}(X): \eta \sim \gamma\}}$. It is known that $H(\gamma, X)$ is a compact, X^{t}-invariant, and transitive subset of X. In [3], Bautista showed that the geometric Lorenz attractor is a homoclinic class. In [14], Komuro proved that the geometric Lorenz attractor is \mathcal{K}^{*}-expansive.

For any $x, y \in M$ and $\delta>0$, a sequence $\left\{\left(x_{i}, t_{i}\right): t_{i} \geq 1, i=1, \ldots, n\right\} \subset M$ is called a δ-chain from x to y if $d\left(X^{t_{n-1}}\left(x_{n-1}\right), x_{n}\right)<\delta, x_{0}=x$, and $x_{n}=y$. Then an equivalence relation can be defined on the set $\mathcal{C R}(X)$, where $\mathcal{C} \mathcal{R}(X)$ is the chain recurrence set of X. It is clear that $\Omega(X) \subset \mathcal{C R}(X)$. Let γ be a hyperbolic periodic orbit of X, and let $C(\gamma, X)=\{x \in M$: the δ-chain from x to γ and γ to $x\}$. According to the definition, it is easy to see that $C(\gamma, X)$ is closed and X^{t}-invariant, and $H(\gamma, X) \subset C(\gamma, X)$.

A closed X^{t}-invariant set Λ is called locally maximal if there is a neighborhood U of Λ such that $\Lambda=\bigcap_{t \in \mathbb{R}} X^{t}(U)$. Lee and Park [25] proved that for C^{1} generic $X \in \mathfrak{X}(M)$, if a locally maximal homoclinic class $H(\gamma, X)$ is expansive, then it is hyperbolic. Lee and Oh [24] proved that for C^{1} generic $X \in \mathfrak{X}(M)$, if a locally maximal homoclinic class $H(\gamma, X)$ is measure expansive, then it is hyperbolic. Recently, Lee [21] proved that for C^{1} generic $X \in \mathfrak{X}(M)$, if a homoclinic class $H(\gamma, X)$ is measure expansive, then it is hyperbolic.

In the present study, the following analogue is proved.
Theorem B. For C^{1} generic $X \in \mathfrak{X}(M)$, if for some hyperbolic closed orbit γ, the homoclinic class $H(\gamma, X)$ is continuum-wise expansive, then it is hyperbolic.

To prove Theorem B, we show that if a homoclinic class $H(\gamma, X)$ is conti-nuum-wise expansive, then $H(\gamma, X)$ does not contain any singular points. We introduce the notion of weak hyperbolic closed orbits, which is related to results by Yang and Gan [39]. According to Bonatti and Crovisier [7], for a C^{1} generic vector field X, a homoclinic class $H(\gamma, X)$ is a chain recurrence class $C(\gamma, X)$. Moreover, by the result in [38], if a homoclinic class $H(\gamma, X)$ is continuum-wise expansive, then we show that the class is hyperbolic.

3. Proof of Theorem A

Let M be as before, and let $X \in \mathfrak{X}(M)$.
Lemma 3.1 ([2, Lemma 2.1]). If X is continuum-wise expansive, then $\operatorname{Sing}(X)$ $=\emptyset$.

Let $T_{x} M(r)$ be the r-ball $\left\{v \in T_{x} M:\|v\| \leq r\right\}$ in $T_{x} M$. Let $\mathcal{N}_{x, r}=$ $\exp _{x}\left(T_{x} M(r)\right)$. If x is a regular point of $X, N_{x}=\left\{v \in T_{x} M: v \cdot X(x)=0\right\}$ denotes the orthogonal complement of $X(x)$ in $T_{x} M$, and $\Phi_{x}: T_{x} M \rightarrow N_{x}$ the orthogonal projection of $T_{x} M$ onto N_{x}. For all $t \in \mathbb{R}$, we define the linear Poincaré flow of X by

$$
P_{x}^{t}: N_{x} \rightarrow N_{X^{t}(x)} \text { by } P_{x}^{t}=\Phi_{X^{t}(x)} \circ D X^{t}(x) .
$$

For any regular point x of X and $t \in \mathbb{R}$, there are a constant $r>0$ and a $C^{1} \operatorname{map} \tau: \mathcal{N}_{x, r} \rightarrow \mathbb{R}$ such that $\tau(x)=t$ and $X_{\tau(y)}(y) \in \mathcal{N}_{X^{t}(x), 1}$ for any $y \in \mathcal{N}_{x, r}$. Then the Poincaré map $f_{x, t}: \mathcal{N}_{x, r_{0}} \rightarrow \mathcal{N}_{X^{t}(x), 1}$ is given by

$$
f_{x, t}(y)=X^{\tau(y)}(y) \text { for all } y \in \mathcal{N}_{x, r_{0}}
$$

If $X^{t}(x) \neq x$ for $0<t \leq T$ and r_{0} is sufficiently small, then $(t, y) \mapsto X^{t}(y)$ C^{1} embeds $\left\{(t, y) \in \mathbb{R} \times \mathcal{N}_{x, r}: 0 \leq t \leq \tau(y)\right\}$ for $0<r \leq r_{0}$. The image $\left\{X^{t}(y): y \in \mathcal{N}_{x, r}\right.$ and $\left.0 \leq t \leq \tau(y)\right\}$ is denoted by $F_{x}\left(X^{t}, r, T\right)$ and is called the flow box of x. The following is a vector field analogue of Franks' lemma (see [27]).

Lemma 3.2. Let $p \in \gamma \in \operatorname{Per}(X)$ with period $\pi(p)>0$ and let $f: \mathcal{N}_{p, r_{1}} \rightarrow \mathcal{N}_{p}$ be the Poincaré map of X for some $r_{1}>0$. Let $\mathcal{U}(X) \subset \mathfrak{X}(M)$ be a C^{1} neighborhood of X, and let $0<r \leq r_{1}$ be given. Then there are $\delta>0$ and $0<\epsilon_{0}<r / 2$ such that for a linear map $L: N_{p} \rightarrow N_{p}$ with $\left\|L-D_{p} f\right\|<\delta$, there exists $Y \in \mathcal{U}(X)$ having the following properties:
(a) $Y(x)=X(x)$ if $x \notin F_{p}\left(X^{t}, r, \pi(p)\right)$;
(b) $p \in \gamma \in \operatorname{Per}(Y)$;
(c) $g(x)= \begin{cases}\exp _{p} \circ L \circ \exp _{p}^{-1}(x), & \text { if } x \in B_{\epsilon_{0} / 4}(p) \cap \mathcal{N}_{p, r}, \\ f(x), & \text { if } x \notin B_{\epsilon_{0}}(p) \cap \mathcal{N}_{p, r},\end{cases}$
where $B_{\epsilon_{0}}(x)$ is an ϵ_{0} neighborhood of $x \in M$, and $g: \mathcal{N}_{p, r} \rightarrow \mathcal{N}_{p}$ is the Poincaré map of Y.

Lemma 3.3. Let $\operatorname{Sing}(X)=\emptyset$. If X is not star, then there is Y that is C^{1} close to X such that the Poincaré map f of Y has a closed small arc \mathcal{J} whose endpoints are hyperbolic.
Proof. As X is not star, we may assume that there is Y that is C^{1} close to X such that Y has a non-hyperbolic closed orbit η. Let $q \in \eta$ and let $f: \mathcal{N}_{q, r} \rightarrow \mathcal{N}_{q}$ (for some $r>0$) be the Poincaré map of Y. As q is not hyperbolic, there is an eigenvalue λ of $D_{q} f$ such that $|\lambda|=1$. As $|\lambda|=1$, we may assume that $\lambda=1$ (the other case is similar). Then by Lemma 3.2, there are $\delta>0$ and $0<\epsilon_{0}<r / 2$ such that for a linear map $L: N_{q} \rightarrow N_{q}$ with $\left\|L-D_{q} f\right\|<\delta$, there exists Z that is C^{1} closed to Y satisfying
(a) $Z(x)=Y(x)$ if $x \notin F_{q}\left(X^{t}, r, \pi(q)\right)$,
(b) $q \in \eta \in \operatorname{Per}(Z)$, and
(c) $g(x)= \begin{cases}\exp _{q} \circ L \circ \exp _{q}^{-1}(x), & \text { if } x \in B_{\epsilon_{0} / 4}(q) \cap \mathcal{N}_{q, r}, \\ f(x), & \text { if } x \notin B_{\epsilon_{0}}(q) \cap \mathcal{N}_{q, r},\end{cases}$
where $B_{\epsilon_{0}}(x)$ is an ϵ_{0} neighborhood of $x \in M$, and $g: \mathcal{N}_{q, r} \rightarrow \mathcal{N}_{q}$ is the Poincaré map of Y.

Let $u \in T_{q} M$ be a nonzero vector such that u is associated with the eigenvalue λ and $\|u\|=\epsilon_{0} / 4$. Then we have

$$
g\left(\exp _{q}(u)\right)=\exp _{q} \circ L \circ \exp _{q}^{-1}\left(\exp _{q}(u)\right)=\exp _{q}(u)
$$

Let $J=\left\{t u:-\epsilon_{0} / 4 \leq t \leq \epsilon_{0} / 4\right\}$ and let $\mathcal{J}=\exp _{q}(J)$. Then $\left.g\right|_{\mathcal{J}}: \mathcal{J} \rightarrow \mathcal{J}$ is the identity. Let $r_{1}, r_{2} \in \mathcal{J}$ be the endpoints of \mathcal{J}. Again, using Lemma 3.2 , there is W that is C^{1} close to Z (also, C^{1} close to X) such that r_{1}^{\prime} and $r_{2}^{\prime} \in \operatorname{Per}(h)$ are hyperbolic, and $\left.h\right|_{\mathcal{J}}: \mathcal{J} \rightarrow \mathcal{J}$ is the identity map, where h is the Poincaré map of W.

Let $p \in \gamma \in \operatorname{Per}(X)$ and let $f: \mathcal{N}_{p, r} \rightarrow \mathcal{N}_{p}$ be the Pioincaré map of $X \in \mathfrak{X}(M)$. For any $\epsilon>0$, a closed small $\operatorname{arc} \mathcal{I}$ is called an ϵ-periodic curve if
(a) $f(\mathcal{I})=\mathcal{I}$,
(b) the length of $f(\mathcal{I})$ is less than or equal to ϵ and the endpoints are hyperbolic, and
(c) \mathcal{I} is normally hyperbolic (see [12]).

Remark 3.4. Let $X \in \mathfrak{X}(M)$ and \mathcal{I} be a normally hyperbolic manifold. Then, there is a C^{1} neighborhood $\mathcal{U}(X)$ of X such that for any $Y \in \mathcal{U}(X)$, there is a closed small curve \mathcal{J} close to \mathcal{I} such that \mathcal{J} is also normally hyperbolic (see [4]).

The following is a vector field analogue of the result on diffeomorphisms in [20].

Proposition 3.5. There is a residual set $\mathcal{R} \subset \mathfrak{X}(M)$ such that for any $X \in \mathcal{R}$, either (a) X is star or (b) X has an ϵ-periodic closed arc \mathcal{I}.
Proof. As M is compact, there is a countable basis $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ for the topology of M. For any $\epsilon>0$, let $\mathcal{H}_{n}(\epsilon)=\{Y \in \mathfrak{X}(M): Y$ has an ϵ-periodic closed curve
\mathcal{I} and the endpoints are hyperbolic\}. By Remark 3.4 and the hyperbolicity of closed orbits, $\mathcal{H}_{n}(\epsilon)$ is open in $\mathfrak{X}(M)$. Let $\mathcal{N}_{n}(\epsilon)=\mathfrak{X}(M)-\overline{\mathcal{H}}(\epsilon)$. Then $\mathcal{H}_{n}(\epsilon) \cup \mathcal{N}_{n}(\epsilon)$ is an open dense subset of $\mathfrak{X}(M)$. Let

$$
\mathcal{R}=\bigcap_{n \in \mathbb{N}} \mathcal{H}_{n}(\epsilon) \cup \mathcal{N}_{n}(\epsilon) .
$$

Then \mathcal{R} is a residual subset of $\mathfrak{X}(M)$. Let $X \in \mathcal{R}$, and we assume that X is not star. By Lemma 3.3, $X \in \overline{\mathcal{H}_{n}(\epsilon)}$ for any $n \in \mathbb{N}$. Then $X \notin \mathcal{N}_{n}(\epsilon)$, and therefore $X \in \mathcal{H}_{n}(\epsilon)$. Thus, X has an ϵ-periodic closed $\operatorname{arc} \mathcal{I}$ and the endpoints are hyperbolic.

Proposition 3.6. For C^{1} generic $X \in \mathfrak{X}(M)$, if X is continuum-wise expansive, then $X \in \mathcal{G}^{*}(M)$.

Proof. Let $X \in \mathcal{R}$ be continuum-wise expansive. We assume toward a contradiction that $X \notin \mathcal{G}^{*}(M)$. As X is continuum-wise expansive, by Lemma 3.1, $\operatorname{Sing}(X)=\emptyset$. As $X \in \mathcal{R}$, by Proposition 3.5, X has an ϵ-periodic closed arc \mathcal{I}. It is clear that $\mathcal{I} \subset M$ is a nontrivial continuum. Let $\delta=\epsilon$ be the constant of continuum-wise expansiveness for X. As \mathcal{I} is an ϵ-periodic curve,

$$
\operatorname{diam}\left(f^{i}(\mathcal{I})\right)=\operatorname{diam}(\mathcal{I}) \leq \delta
$$

for all $i \in \mathbb{Z}$, where f is the Poincaré map of X. As \mathcal{I} is not a singleton, f is not continuum-wise expansive. By [2, Theorem 3.2], X is not continuum-wise expansive, which is a contradiction.

Proof of Theorem A. Let $X \in \mathcal{R}$ be continuum-wise expansive. By Proposition 3.6, $X \in \mathcal{G}^{*}(M)$. By the result in [11], if $\operatorname{Sing}(X)=\emptyset$ and $X \in \mathcal{G}^{*}(M)$, then X satisfies Axiom A and has no cycles.

4. Proof of Theorem B

In this section, it is proved that for a C^{1} generic vector field X, if a homoclinic class $H(\gamma, X)$ is continuum-wise expansive, then $H(\gamma, X)$ has no singular points and is hyperbolic. The following provides information on singularities in homoclinic classes.

Lemma 4.1. Let $\Lambda \subset M$ be a closed X^{t}-invariant subset of X. If Λ is continuum-wise expansive, then $\Lambda \cap \operatorname{Sing}(X)$ is totally disconnected.
Proof. We assume toward a contradiction that $\Lambda \cap \operatorname{Sing}(X)$ is not totally disconnected. Then for any $\eta>0$, there is a closed set $A \subset \Lambda \cap \operatorname{Sing}(X)$ such that A is a continuum with $\operatorname{dim} A<\eta$. Let $\alpha: A \rightarrow \operatorname{Hom}(\mathbb{R}, 0)$ such that $\alpha(x)(t)=\alpha_{x}(t)=i d$ for all $x \in A$ and all $t \in \mathbb{R}$. As $A \subset \Lambda \cap \operatorname{Sing}(X)$, we have $X^{t}(A)=A$ for all $t \in \mathbb{R}$. Let $\delta=2 \eta$ and let $\mathcal{X}_{\alpha}^{t}(A)=\left\{X^{\alpha_{x}(t)}(x): \forall x \in\right.$ $A, \alpha \in \mathcal{H}(A), \forall t \in \mathbb{R}\}$. Then

$$
\operatorname{diam}\left(\mathcal{X}_{\alpha}^{t}(A)\right)=\operatorname{diam}\left(X^{t}(A)\right)=\operatorname{diam}(A)<\delta
$$

As A is not an orbit, this is a contradiction. Thus, if Λ is continuum-wise expansive, then $\Lambda \cap \operatorname{Sing}(X)$ is totally disconnected.

In general, a homoclinic class $H(\gamma, X)$ has a singular point (see [3]). The following lemma shows that if a homoclinic class $H(\gamma, X)$ is continuum-wise expansive, then it does not contain singular points.

Lemma 4.2. Let $\gamma \in \operatorname{Per}(X)$ be hyperbolic. If $H(\gamma, X)$ is continuum-wise expansive, then $H(\gamma, X) \cap \operatorname{Sing}(X)=\emptyset$.
Proof. We assume toward a contradiction that $H(\gamma, X) \cap \operatorname{Sing}(X) \neq \emptyset$. As $H(\gamma, X)$ is continuum-wise expansive, by Lemma 4.1, $H(\gamma, X) \cap \operatorname{Sing}(X)$ is totally disconnected. This is a contradiction because M is connected. Thus, $H(\gamma, X) \cap \operatorname{Sing}(X)=\emptyset$.

A closed orbit γ is weak hyperbolic if for any $p \in \gamma$ and any $\delta>0, D_{p} f$ has an eigenvalue μ such that $(1-\delta) \leq|\mu| \leq(1+\delta)$, where f is the Poincaré map of X.

The proof of the following lemma is similar to that in [21], which is still unpublished. For convenience, a proof is provided here.
Lemma 4.3. Let $\eta \in H(\gamma, X) \cap \operatorname{Per}(X)$ with $\eta \sim \gamma$. If η is a weak hyperbolic closed orbit, then there is Y that is C^{1} close to X such that g has a small arc \mathcal{J} whose endpoints are homoclinically related to $p \in \gamma_{Y}$, where g is the Poincaré map of Y, and γ_{Y} is the continuation of γ.

Proof. Let $\eta \in H(\gamma, X) \cap \operatorname{Per}(X)$ with $\eta \sim \gamma$. We assume that η is a weak hyperbolic closed orbit. Let $q \in \eta$ and let $f: \mathcal{N}_{q, r} \rightarrow \mathcal{N}_{q}$ (for some $r>0$) be the Poincaré map of X. As η is a weak hyperbolic closed orbit of X, by Lemma 3.2 , there are $\delta>0$ and $0<\epsilon_{0}<r / 2$ such that for a linear map $L: N_{q} \rightarrow N_{q}$ with $\left\|L-D_{q} f\right\|<\delta$, there is Y that is C^{1} closed to X such that
(a) $Y(x)=X(x)$ if $x \notin F_{q}\left(X^{t}, r, \pi(q)\right)$,
(b) $q \in \eta \in \operatorname{Per}(Y)$,
(c) $\eta \sim \gamma_{Y}$, and
(d) $g(x)= \begin{cases}\exp _{q} \circ L \circ \exp _{q}^{-1}(x), & \text { if } x \in B_{\epsilon_{0} / 4}(q) \cap \mathcal{N}_{q, r}, \\ f(x), & \text { if } x \notin B_{\epsilon_{0}}(q) \cap \mathcal{N}_{q, r},\end{cases}$
where $B_{\epsilon_{0}}(x)$ is an ϵ_{0} neighborhood of $x \in M$, and $g: \mathcal{N}_{q, r} \rightarrow \mathcal{N}_{q}$ is the Poincaré map of Y. Then $D_{q} g$ has an eigenvalue μ such that $|\mu|=1$. As $|\mu|=1$, we may assume that $\mu=1$ (the other case similar). Let u be a nonzero vector that is associated with the eigenvalue μ and $\|u\|=\epsilon_{0} / 4$. Then

$$
g\left(\exp _{q}(u)\right)=\exp _{q} \circ L \circ \exp _{q}^{-1}\left(\exp _{q}(u)\right)=\exp _{q}(u)
$$

Let $J=\left\{t u:-\epsilon_{0} / 4 \leq t \leq \epsilon_{0} / 4\right\}$ and $\mathcal{J}=\exp _{q}(J)$. Then $\left.g\right|_{\mathcal{J}}: \mathcal{J} \rightarrow \mathcal{J}$ is the identity. Let q_{1} and q_{2} be the endpoints of \mathcal{J}. Then, as in the proof in [33, Proposition 3], there is h that is C^{1} close to g (also C^{1} close to f) such that q_{1}, q_{2}, and q are the only periodic points of $h,\left.h\right|_{\mathcal{J}_{1}}$ is the identity, and $q_{1} \sim p_{h} \in \gamma_{Z}$ and $q_{2} \sim p_{h} \in \gamma_{Z}$, where γ_{Z} is the continuation of γ, and the

Poincaré map h is associated with a vector field Z that is C^{1} close to Y. Thus, if η is a weak hyperbolic closed orbit, then there is Z that C^{1} close to X such that h has a small arc \mathcal{J}_{1} whose endpoints q_{1} and q_{2} are homoclinically related to $p_{h} \in \gamma_{Z}$, where h is the Poincaré map of Z. This proves Lemma 4.3.

Yang and Gan [39] introduced the following vector field analogue. Let $H(\gamma, X)$ be a homoclinic class. For any $\epsilon>0$, a closed small curve \mathcal{I} is called ϵ-periodically simple if
(a) $f(\mathcal{I})=\mathcal{I}$,
(b) the length of $f(\mathcal{I})$ is less than or equal to ϵ and the endpoints are homoclinically related to $p \in \gamma$, and
(c) \mathcal{I} is normally hyperbolic (see [12]), where f is the Poincaré map of X.

This slightly differs from an ϵ-simple curve in (b). It should be noted that if $\gamma \in \operatorname{Per}(X)$ is a 2-weak hyperbolic closed orbit of X, then for any $\delta>0$, there is an eigenvalue μ of $D_{p} f$ such that $(1-2 \delta) \leq|\mu| \leq(1+2 \delta)$ in the notion above.

Lemma 4.4. There is a residual set $\mathcal{G}_{1} \subset \mathfrak{X}(M)$ such that for any $X \in \mathcal{G}_{1}$ and any hyperbolic closed orbit γ of X, we have:
(a) For any $\epsilon>0$, if for any C^{1} neighborhood $\mathcal{U}(X)$ of X, there is $Y \in$ $\mathcal{U}(X)$ that has an ϵ-periodically simple curve \mathcal{J} such that the two endpoints of \mathcal{J} are homoclinically related to γ_{Y}, then X has a 2ϵ periodically simple curve \mathcal{L} such that the two endpoints of \mathcal{L} are homoclinically related to γ (see [39, Lemma 2.1]).
(b) For any $\delta>0$, if for any C^{1} neighborhood $\mathcal{U}(X)$ of X, there is $Y \in$ $\mathcal{U}(X)$ that has a periodic orbit $\eta \sim \gamma_{Y}$ with weak hyperbolic orbit, then X has a periodic orbit $\eta \sim \gamma$ with 2-weak hyperbolic orbit (see [39, Lemma 2.1]).
(c) For any $\delta>0$, if X has a periodic closed orbit $\eta \sim \gamma$ with weak periodic orbit, then X has a periodic orbit $\tau \sim \gamma$ with weak periodic orbit whose eigenvalues are all real (see [39, Lemma 2.3]).
Lemma 4.5. There is a residual set $\mathcal{G}_{2} \subset \mathfrak{X}(M)$ such that for any $X \in \mathcal{G}_{2}$, we have:
(a) X is Kupka-Smale, that is, every $\sigma \in \operatorname{Crit}(X)$ is hyperbolic and its stable and unstable manifolds intersect transversally (see [16]).
(b) $H(\gamma, X)=C(\gamma, X)$ for some hyperbolic closed orbit $\gamma($ see [7]).

Lemma 4.6. There is a residual set $\mathcal{G}_{3} \subset \mathfrak{X}(M)$ such that for any $X \in \mathcal{G}_{3}$, if $H(\gamma, X)$ is continuum-wise expansive, then every $\eta \in H(\gamma, X) \cap \operatorname{Per}(X)$ with $\eta \sim \gamma$ is not a weak hyperbolic closed orbit of X.
Proof. Let $X \in \mathcal{G}_{3}=\mathcal{G}_{1} \cap \mathcal{G}_{2}$, and let $H(\gamma, X)$ be continuum-wise expansive. We assume that there is $\eta \in H(\gamma, X) \cap \operatorname{Per}(X)$ with $\eta \sim \gamma$ such that η is a weak hyperbolic closed orbit. By Lemma 4.3, for any $\epsilon>0$, there is Y that is C^{1} close to X such that g has a small $\operatorname{arc} \mathcal{J}$ whose endpoints are homoclinically related
to $p_{Y} \in \gamma_{Y}$, and is an ϵ-periodically simple curve, where g is the Poincaré map of Y and γ_{Y} is the continuation of γ. By Lemmas 4.4 and 4.5, f has a small arc $\mathcal{L} \subset H(\gamma, X)=C(\gamma, X)$ whose endpoints are homoclinically related to $p \in \gamma$, and is a 2ϵ-periodically simple curve. Let $\delta=2 \epsilon$ be the constant of continuum-wise expansiveness. As $\mathcal{L} \subset H(\gamma, X)$ is a 2ϵ-periodically simple curve, $f^{i}(\mathcal{L})=\mathcal{L}$ for all $i \in \mathbb{Z}$. Thus, $\operatorname{diam}\left(f^{i}(\mathcal{L})\right)=\operatorname{diam} \mathcal{L} \leq \delta$ for all $i \in \mathbb{Z}$. It is clear that \mathcal{L} is not a singleton. Thus, by [2, Theorem 3.2], $H(\gamma, X)$ is not continuum-wise expansive, which is a contradiction.

The following is a vector field analogue of the result in [38]. It provides information on nonhyperbolic homoclinic classes if a homoclinic class $H(\gamma, X)$ does not contain any singular points.
Lemma 4.7 ([38]). There is a residual set $\mathcal{G}_{4} \subset \mathfrak{X}(M)$ such that for any $X \in \mathcal{G}_{4}$, if a homoclinic class $H(\gamma, X)$ does not contain any singular points and $H(\gamma, X)$ is not hyperbolic, then there is $\eta \in H(\gamma, X) \cap \operatorname{Per}(X)$ with $\eta \sim \gamma$ such that η is a weak hyperbolic periodic orbit of X.
Proof of Theorem B. Let $X \in \mathcal{G}_{3} \cap \mathcal{G}_{4}$ and $H(\gamma, X)$ be continuum-wise expansive. We assume that $H(\gamma, X)$ is not hyperbolic. As $H(\gamma, X)$ is continuum-wise expansive $X \in \mathcal{G}_{4}$, by Lemma 4.7, there is $\eta \in H(\gamma, X) \cap \operatorname{Per}(X)$ with $\eta \sim \gamma$ such that η is a weak hyperbolic closed orbit of X. As $H(\gamma, X)$ is continuumwise expansive, by Lemma 4.6, X has no weak hyperbolic closed orbits. This is a contradiction. Thus, C^{1} generically, if $H(\gamma, X)$ is continuum-wise expansive, then $H(\gamma, X)$ is hyperbolic.

5. Divergence-free vector fields

Let M be a compact, connected, and smooth $n(\geq 3)$-dimensional Riemannian manifold endowed with a volume form with respect to Lebesgue measure μ. Let $\mathfrak{X}_{\mu}(M)$ denote the space of C^{1} divergence-free vector fields, and we consider the usual C^{1} Whitney topology on this space.

A vector field X is called divergenc-free if its divergence is equal to zero. It is known that by Liouville's formula, a flow X^{t} is volume preserving if and only if the corresponding $X \in \mathfrak{X}_{\mu}(M)$ is divergence-free. Ferreira [10] proved that if a divergence-free vector field X belongs to the C^{1} interior of the set of all expansive divergence-free vector fields, then it is Anosov. Lee [19] proved that if a divergence-free vector field X belongs to the C^{1} interior of the set of all continuum-wise expansive divergence-free vector fields, then it is Anosov. Bessa, Lee, and Wen [6] proved that C^{1} generically, if a divergence-free vector field X is expansive, then it is Anosov. Here, the following analogue is proved.
Theorem C. For C^{1} generic $X \in \mathfrak{X}_{\mu}(M)$, if a vector field X is continuumwise expansive, then it is Anosov.
Proof. By the result in [5], for a C^{1} generic vector field $X \in \mathfrak{X}_{\mu}(M), M=$ $H(\gamma, X)$. As in the proof of Theorem B, we have that $H(\gamma, X)$ is hyperbolic. Thus, C^{1} generically, if X is continuum-wise expansive, then X is Anosov.

References

[1] A. Arbieto, Peirodic orbits and expansiveness, Math. Z. 269 (2011), 801-807.
[2] A. Arbieto, W. Cordeiro and M. J. Pacifico, Continuum-wise expansivity and entropy for flows, to appear in Ergodic Theory Dynam. Systems.
[3] S. Bautista, The geometric Lorenz attractor is a homoclinic class, Bol. Mat. 11 (2004), 69-78.
[4] P. Bergera and A. Bounemourab, A geometrical proof of the persistence of normally hyperbolic submanifolds, Dynam. Syst. 28(2013), 567-581.
[5] M. Bessa, A generic incompressible flow is topological mixing, C. R. Math. Acad. Sci. Paris 346 (2008), 1169-1174.
[6] M. Bessa, M. Lee and X. Wen, Shadowing, expansiveness and specification for C^{1} conservative systems, Acta Math. Sci. 35 (2015), 583-600.
[7] C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math. 158 (2004), 180193.
[8] R. Bowen and P. Walters, Expansive one-parameter flows, J. Diff. Eqns. 12 (1972), 180-193.
[9] T. Das, K. Lee and M. Lee, C^{1}-persistently continuum-wise expansive homoclinic classes and recurrent sets, Topol. Its Appl. 160 (2013), 350-359.
[10] C. Ferreira, Shadowing, expansiveness and stability of divergence-free vector fields, Bull. Korean Math. Soc. 51 (2014), no. 1, 67-76. https://doi.org/10.4134/BKMS.2014.51. 1.067
[11] S. Gan and L. Wen, Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math. 164 (2006), no. 2, 279-315. https://doi.org/10.1007/s00222-005-0479-3
[12] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin, 1977.
[13] H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), no. 3, 576-598. https://doi.org/10.4153/CJM-1993-030-4
[14] M. Komuro, Expansive properties of Lorenz attractors, in The theory of dynamical systems and its applications to nonlinear problems (Kyoto, 1984), 4-26, World Sci. Publishing, Singapore, 1984.
[15] N. Koo, K. Lee, and M. Lee, Generic diffeomorphisms with measure-expansive homoclinic classes, J. Difference Equ. Appl. 20 (2014), no. 2, 228-236. https://doi.org/10. 1080/10236198.2013.829053
[16] I. Kupka, Contribution à la théorie des champs génériques, Contributions to Differential Equations 2 (1963), 457-484.
[17] M. Lee, Measure expansive homoclinic classes for generic diffeomorphisms, Appl. Math. Sci. 73 (2015), 3623-3628.
[18] M. Lee, Continuum-wise expansiveness for non-conservative or conservative systems, Chaos Solitons \& Fractals 87 (2016), 314-318.
[19] M. Lee, Continuum-wise expansive homoclinic classes for generic diffeomorphisms, Publ. Math. Debrecen 88 (2016), no. 1-2, 193-200.
[20] M. Lee, Continuum-wise expansiveness for generic diffeomorphisms, Nonlinearity 31 (2018), no. 6, 2982-2988. https://doi.org/10.1088/1361-6544/aaba38
[21] M. Lee, Measure expansive homoclinic classes for C^{1} generic vector fields, Mathematics 8 (2020), 1232.
[22] K. Lee and M. Lee, Hyperbolicity of C^{1}-stably expansive homoclinic classes, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 1133-1145. https://doi.org/10.3934/dcds. 2010. 27.1133
[23] K. Lee and M. Lee, Measure-expansive homoclinic classes, Osaka J. Math. 53 (2016), no. 4, 873-887. http://projecteuclid.org/euclid.ojm/1475601821
[24] M. Lee and J. Oh, Measure expansive flows for the generic view point, J. Difference Equ. Appl. 22 (2016), no. 7, 1005-1018. https://doi.org/10.1080/10236198.2016.1172573
[25] S. Lee and J. Park, Expansive homoclinic classes of generic C^{1}-vector fields, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 12, 1451-1458. https://doi.org/10.1007/s10114-016-5207-y
26] R. Mañé, Expansive diffeomorphisms, in Dynamical systems-Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), 162-174, Lecture Notes in Math., Vol. 468, Springer, Berlin, 1975.
[27] K. Moriyasu, K. Sakai, and N. Sumi, Vector fields with topological stability, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3391-3408. https://doi.org/10.1090/S0002-9947-01-02748-9
[28] K. Moriyasu, K. Sakai, and W. Sun, C^{1}-stably expansive flows, J. Differential Equations 213 (2005), no. 2, 352-367. https://doi.org/10.1016/j.jde.2004.08.003
[29] M. Oka, Expansiveness of real flows, Tsukuba J. Math. 14 (1990), no. 1, 1-8. https: //doi.org/10.21099/tkbjm/1496161314
[30] M. J. Pacifico, E. R. Pujals, M. Sambarino, and J. L. Vieitez, Robustly expansive codimension-one homoclinic classes are hyperbolic, Ergodic Theory Dynam. Systems 29 (2009), no. 1, 179-200. https://doi.org/10.1017/S0143385708000175
[31] M. J. Pacifico, E. R. Pujals, and J. L. Vieitez, Robustly expansive homoclinic classes, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 271-300. https://doi.org/10.1017/ S0143385704000203
[32] K. Sakai, Continuum-wise expansive diffeomorphisms, Publ. Mat. 41 (1997), no. 2, 375-382. https://doi.org/10.5565/PUBLMAT_41297_04
[33] M. Sambarino and J. L. Vieitez, On C^{1}-persistently expansive homoclinic classes, Discrete Contin. Dyn. Syst. 14 (2006), no. 3, 465-481. https://doi.org/10.3934/dcds. 2006.14.465
[34] M. Sambarino and J. L. Vieitez, Robustly expansive homoclinic classes are generically hyperbolic, Discrete Contin. Dyn. Syst. 24 (2009), no. 4, 1325-1333. https://doi.org/ 10.3934/dcds.2009.24.1325
[35] L. Senos, Generic Bowen-expansive flows, Bull. Braz. Math. Soc. (N.S.) 43 (2012), no. 1, 59-71. https://doi.org/10.1007/s00574-012-0005-3
[36] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. https://doi.org/10.1090/S0002-9904-1967-11798-1
[37] W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774. https://doi.org/10.2307/2031982
[38] X. Wang, Hyperbolicity versus weak periodic orbits inside homoclinic classes, Ergodic Theory Dynam. Systems 38 (2018), no. 6, 2345-2400. https://doi.org/10.1017/etds. 2016.122
[39] D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4, 729733. https://doi.org/10.1088/0951-7715/22/4/002

Manseob Lee
Department of Marketing Big Data
Mokwon University
Daejeon 35349, Korea
Email address: lmsds@mokwon.ac.kr

[^0]: Received July 15, 2022; Accepted December 1, 2022.
 2010 Mathematics Subject Classification. 37C10, 37C20, 34D10, 37C27.
 Key words and phrases. Expansive, continuum-wise expansive, Axiom A, homoclinic class, hyperbolic, generic.

