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CONTINUUM-WISE EXPANSIVENESS FOR C1 GENERIC

VECTOR FIELDS

Manseob Lee

Abstract. It is shown that every continuum-wise expansive C1 generic

vector field X on a compact connected smooth manifold M satisfies Ax-
iom A and has no cycles, and every continuum-wise expansive homoclinic

class of a C1 generic vector field X on a compact connected smooth

manifold M is hyperbolic. Moreover, every continuum-wise expansive C1

generic divergence-free vector field X on a compact connected smooth

manifold M is Anosov.

1. Introduction

Utz [37] introduced a concept in dynamical systems that is called expan-
siveness. Roughly speaking, expansiveness implies that two orbits cannot stay
close to each other under the iteration of the system. Later, Kato [13] intro-
duced a notion generalizing the usual concept of expansiveness that is called
continuum-wise expansiveness. These concepts have been studied in the context
of hyperbolic systems. Indeed, for a diffeomorphism f on a compact smooth
manifold M, Mañé [26] proved that if f belongs to the C1-interior of the set of
expansive diffeomorphisms, then f is quasi-Anosov, that is, if there is a non-
zero vector in the tangent space, then the tangent space is unbounded. Sakai
[32] proved that if a diffeomorphism f belongs to the C1-interior of the set of
continuum-wise expansive diffeomorphisms, then f is quasi-Anosov. Arbieto
[1] proved that every expansive C1 generic diffeomorphism f on a compact
connected smooth manifold M satisfies Axiom A and has no cycles. Lee [20]
proved that every continuum-wise expansive C1 generic diffeomorphism f on
a compact connected smooth manifold M satisfies Axiom A and has no cycles.
If a diffeomorphism f satisfies Axiom A and has cycles, then by [36], the non-
wandering set Ω(f) admits a disjoint union of transitive invariant closed sets,
where these sets are homoclinic classes. To determine whether such classes are
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hyperbolic under some dynamical assumption is an important problem. In-
deed, in several studies [9,15,17,19,21–25,30,31,33,34,39], it was shown that if
a homoclinic class is C1 expansive in various senses (e.g., robustly, persistently,
stably, or generic), then it is hyperbolic. In particular, Das, Lee, and Lee [9]
proved that if a homoclinic class is C1 robustly continuum-wise expansive and
satisfies the chain condition, then it is hyperbolic. Yang and Gan [39] proved
that every expansive homoclinic class of C1 generic diffeomorphisms is hyper-
bolic. Lee [19] proved that every continuum-wise expansive homoclinic class of
C1 generic diffeomorphisms is hyperbolic.

In this study, the previously mentioned results on continuum-wise expansive
diffeomorphisms are extended to vector fields.

The paper is organized as follows. In Section 2, basic notions as well as
Theorems A and B are introduced. In Section 3, Theorem A is proved. In the
proof, we use a notion that is called ϵ-periodic curve and a result by Arbieto,
Cordeiro, and Pacifico [2]. In Section 4, Theorem B is proved. In the proof, we
do not use local maximality, and we show that every continuum-wise expan-
sive C1 generic vector field X on a compact connected smooth manifold M is
hyperbolic. Finally, in Section 5, divergence-free vector fields are studied.

2. Basic notions and theorems

2.1. Continuum-wise expansive vector fields

Throughout this paper, we assume that M is a compact connected n(≥ 3)-
dimensional manifold without boundary, and let X ∈ X(M). The flow of X
will be denoted by Xt, t ∈ R. A point x ∈ M is a singular point of X if
Xt(x) = x for all t ∈ R. Sing(X) denotes the set of all singular points of X.
A point x ∈ M is regular if x ̸∈ Sing(X). A point p ∈ M is periodic if there
is π(p) > 0 such that Xπ(p)(p) = p, where π(p) is the prime period of p. Let
Per(X) be the set of all closed orbits of X. Let Crit(X) = Sing(X)∪Per(X).
It is clear that Crit(X) ⊂ Ω(X), where Ω(X) is the set of all nonwandering
points of X. Following Utz [37], Bowen and Walters [8] introduced a concept
of expansiveness for vector fields.

A closed Xt-invariant set Λ ⊂ M is expansive for X ∈ X(M) if for every
ϵ > 0 there are δ > 0 and an increasing homeomorphism h : R → R with
h(0) = 0 such that for any x, y ∈ Λ, if d(Xt(x), Xh(t)(y)) ≤ δ for all t ∈ R,
then y ∈ X(−ϵ,ϵ)(x). If Λ = M , then the vector field X is called expansive.
Bowen and Walters [8] proved that if a vector field X is expansive, then every
σ ∈ Sing(X) is isolated. Oka [29, Lemma 2] showed that if a vector field X is
expansive, then Sing(X) = ∅.

A point σ ∈ Sing(X) is hyperbolic if the eigenvalues of the derivative
(DX(σ)) of the vector field at σ have a real part differs from zero.

A closed orbit γ = Orb(p) is hyperbolic if the eigenvalues of the derivative
(DXπ(p)(p)) of diffeomorphism Xπ(p) are all different from one, where π(p) is
the period of p.
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A compact invariant set Λ of X is called hyperbolic if there exist constants
C > 0, λ > 0 and a splitting TxM = Es

x ⊕ F (x)⊕ Eu
x such that

(a) the tangent flow DXt is the invariant continuous splitting,
(b) (C, λ)-contracting, that is, for all t > 0 and x ∈ Λ,

∥DXt|Es
x
∥ ≤ Ce−λt and

(c) (C, λ)-expanding, that is, for all t > 0 and x ∈ Λ,

m(DX−t|Eu
x
) ≤ Ce−λt,

where F (x) is the subspace generated by X(x) and m(O) = inf∥v∥=1 ∥O(v)∥ is
the minimum norm of a linear operator O.

A point x ∈ M is a non-wandering point of X if for every t > 0 and every
neighborhood U of x, there is t1 > t such that Xt1(U) ∩ U ̸= ∅. A vector field
X satisfies Axiom A if the nonwandering set Ω(X) is hyperbolic and is the
closure of Crit(X).

For an Axiom A vector field X ∈ X(M), X satisfies the quasi-transversality

condition if TxW
s(x)∩TxW

u(x) =
−→
Ox for x ∈ M, where W s(x) is the stable set

of x and Wu(x) is the unstable set of x. Moriyasu, Sakai, and Sun [28] proved
that if a vector field X belongs to the C1 interior of the set of all expansive
vector fields, then X satisfies Axiom A and the quasi-transversality condition.
This is an extension of a result by Mañé [26]. Lee [18] proved that if a vector
field X belongs to the C1 interior of the set of all continuum-wise expansive
vector fields, then X satisfies Axiom A and the quasi-transversality condition.
This is a generalization of a result by Moriyasu, Sakai, and Sun [28].

An increasing homeomorphism h : R → R with h(0) = 0 is called a repara-
metrization. Hom(R) denotes the set of all homeomorphisms of R. Let Rep(R)
= {h ∈ Hom(R) : h is a reparametrization}. If A is a subset of M , C0(A,R)
denotes the set of real continuous maps defined on A. Let H(A) = {h : A →
Rep(R) : there is xh ∈ A with h(xh)= id and h(·)(t) ∈ C0(A,R) for all t ∈ R},
and if t ∈ R and h ∈ H(A), let

X t
h(A) = {Xh(x)(t)(x) : x ∈ A}.

For convenience, we set h(x)(t) = hx(t) for all x ∈ A and t ∈ R. Let Λ be
a closed subset of M . A set A is called nondegenerate if it is not reduced
to a single point. A ⊂ M is called a continuum if it is a compact connected
nondegenerate subset ofM . Recently, Arbieto et al. [2] introduced the following
definition, which is a vector field analogue of continuum-wise expansiveness.

Definition 2.1. Let X ∈ X(M). X is called continuum-wise expansive if for
any ϵ > 0 there is δ > 0 such that if A ⊂ M is a continuum and h ∈ H(A)
satisfies

diam(X t
h(A)) < δ for all t ∈ R,

then A ⊂ X(−ϵ,ϵ)(x) for some x ∈ A.
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A subset G ⊂ X(M) is called residual if it contains a countable intersection
of open and dense subsets of X(M). A dynamic property is called C1 generic
if it holds in a residual subset of X(M).

In the paper, we write “for C1 generic X ∈ X(M)” means that there is an
open and dense subset R ⊂ X(M) such that for any X ∈ R, . . ..

X ∈ X(M) is called star if there is a C1 neighborhood U(X) of X such that
for any Y ∈ U(X), every γ ∈ Crit(X) is hyperbolic. G∗(M) denotes the set of
all star vector fields. Senos [35] proved that for C1 generic X ∈ X(M), if X is
expansive, then X ∈ G∗(M), and thus it satisfies Axiom A and has no cycles.
In the present study, the following extension will be proved.

Theorem A. For C1 generic X ∈ X(M), if X is continuum-wise expansive,
then it is Axiom A without cycles.

To prove Theorem A, we will show that Sing(X) = ∅, which was proved by
Arbieto, Cordeiro, and Pacifico [2]. Using the concept of ϵ-periodic curves, we
will show that X is weak star, that is, there is a C1 neighborhood U(X) of X
such that every γ ∈ Per(Y ) is hyperbolic for any Y ∈ U(X). The proof follows
using the result by Gan and Wen [11].

2.2. Continuum-wise expansive homocinic classes vector fields

For any hyperbolic η, γ ∈ Per(X), the notation η ∼ γ implies that

W s(η) ⋔ Wu(γ) ̸= ∅ and Wu(η) ⋔ W s(γ) ̸= ∅.

Let H(γ,X) = {η ∈ Per(X) : η ∼ γ}. It is known that H(γ,X) is a compact,
Xt-invariant, and transitive subset of X. In [3], Bautista showed that the
geometric Lorenz attractor is a homoclinic class. In [14], Komuro proved that
the geometric Lorenz attractor is K∗-expansive.

For any x, y ∈ M and δ > 0, a sequence {(xi, ti) : ti ≥ 1, i = 1, . . . , n} ⊂ M
is called a δ-chain from x to y if d(Xtn−1(xn−1), xn) < δ, x0 = x, and
xn = y. Then an equivalence relation can be defined on the set CR(X), where
CR(X) is the chain recurrence set of X. It is clear that Ω(X) ⊂ CR(X).
Let γ be a hyperbolic periodic orbit of X, and let C(γ,X) = {x ∈ M :
the δ-chain from x to γ and γ to x}. According to the definition, it is easy
to see that C(γ,X) is closed and Xt-invariant, and H(γ,X) ⊂ C(γ,X).

A closed Xt-invariant set Λ is called locally maximal if there is a neighbor-
hood U of Λ such that Λ =

⋂
t∈R Xt(U). Lee and Park [25] proved that for C1

generic X ∈ X(M), if a locally maximal homoclinic class H(γ,X) is expansive,
then it is hyperbolic. Lee and Oh [24] proved that for C1 generic X ∈ X(M),
if a locally maximal homoclinic class H(γ,X) is measure expansive, then it
is hyperbolic. Recently, Lee [21] proved that for C1 generic X ∈ X(M), if a
homoclinic class H(γ,X) is measure expansive, then it is hyperbolic.

In the present study, the following analogue is proved.

Theorem B. For C1 generic X ∈ X(M), if for some hyperbolic closed orbit γ,
the homoclinic class H(γ,X) is continuum-wise expansive, then it is hyperbolic.
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To prove Theorem B, we show that if a homoclinic class H(γ,X) is conti-
nuum-wise expansive, then H(γ,X) does not contain any singular points. We
introduce the notion of weak hyperbolic closed orbits, which is related to results
by Yang and Gan [39]. According to Bonatti and Crovisier [7], for a C1 generic
vector field X, a homoclinic class H(γ,X) is a chain recurrence class C(γ,X).
Moreover, by the result in [38], if a homoclinic class H(γ,X) is continuum-wise
expansive, then we show that the class is hyperbolic.

3. Proof of Theorem A

Let M be as before, and let X ∈ X(M).

Lemma 3.1 ([2, Lemma 2.1]). If X is continuum-wise expansive, then Sing(X)
= ∅.

Let TxM(r) be the r-ball {v ∈ TxM : ∥v∥ ≤ r} in TxM . Let Nx,r =
expx(TxM(r)). If x is a regular point of X, Nx = {v ∈ TxM : v · X(x) = 0}
denotes the orthogonal complement of X(x) in TxM, and Φx : TxM → Nx

the orthogonal projection of TxM onto Nx. For all t ∈ R, we define the linear
Poincaré flow of X by

P t
x : Nx → NXt(x) by P t

x = ΦXt(x) ◦DXt(x).

For any regular point x of X and t ∈ R, there are a constant r > 0 and
a C1 map τ : Nx,r → R such that τ(x) = t and Xτ(y)(y) ∈ NXt(x),1 for any
y ∈ Nx,r. Then the Poincaré map fx,t : Nx,r0 → NXt(x),1 is given by

fx,t(y) = Xτ(y)(y) for all y ∈ Nx,r0 .

If Xt(x) ̸= x for 0 < t ≤ T and r0 is sufficiently small, then (t, y) 7→ Xt(y)
C1 embeds {(t, y) ∈ R×Nx,r : 0 ≤ t ≤ τ(y)} for 0 < r ≤ r0. The image
{Xt(y) : y ∈ Nx,r and 0 ≤ t ≤ τ(y)} is denoted by Fx(X

t, r, T ) and is called
the flow box of x. The following is a vector field analogue of Franks’ lemma
(see [27]).

Lemma 3.2. Let p ∈ γ ∈ Per(X) with period π(p) > 0 and let f : Np,r1 → Np

be the Poincaré map of X for some r1 > 0. Let U(X) ⊂ X(M) be a C1

neighborhood of X, and let 0 < r ≤ r1 be given. Then there are δ > 0 and
0 < ϵ0 < r/2 such that for a linear map L : Np → Np with ∥L − Dpf∥ < δ,
there exists Y ∈ U(X) having the following properties:

(a) Y (x) = X(x) if x /∈ Fp(X
t, r, π(p));

(b) p ∈ γ ∈ Per(Y );

(c) g(x) =

{
expp ◦ L ◦ exp−1

p (x), if x ∈ Bϵ0/4(p) ∩Np,r,
f(x), if x /∈ Bϵ0(p) ∩Np,r,

where Bϵ0(x) is an ϵ0 neighborhood of x ∈ M , and g : Np,r → Np is the
Poincaré map of Y .
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Lemma 3.3. Let Sing(X) = ∅. If X is not star, then there is Y that is C1

close to X such that the Poincaré map f of Y has a closed small arc J whose
endpoints are hyperbolic.

Proof. As X is not star, we may assume that there is Y that is C1 close
to X such that Y has a non-hyperbolic closed orbit η. Let q ∈ η and let
f : Nq,r → Nq (for some r > 0) be the Poincaré map of Y . As q is not
hyperbolic, there is an eigenvalue λ of Dqf such that |λ| = 1. As |λ| = 1, we
may assume that λ = 1 (the other case is similar). Then by Lemma 3.2, there
are δ > 0 and 0 < ϵ0 < r/2 such that for a linear map L : Nq → Nq with
∥L−Dqf∥ < δ, there exists Z that is C1 closed to Y satisfying

(a) Z(x) = Y (x) if x /∈ Fq(X
t, r, π(q)),

(b) q ∈ η ∈ Per(Z), and

(c) g(x) =

{
expq ◦ L ◦ exp−1

q (x), if x ∈ Bϵ0/4(q) ∩Nq,r,
f(x), if x /∈ Bϵ0(q) ∩Nq,r,

where Bϵ0(x) is an ϵ0 neighborhood of x ∈ M , and g : Nq,r → Nq is the
Poincaré map of Y .

Let u ∈ TqM be a nonzero vector such that u is associated with the eigen-
value λ and ∥u∥ = ϵ0/4. Then we have

g(expq(u)) = expq ◦ L ◦ exp−1
q (expq(u)) = expq(u).

Let J = {tu : −ϵ0/4 ≤ t ≤ ϵ0/4} and let J = expq(J). Then g|J : J → J
is the identity. Let r1, r2 ∈ J be the endpoints of J . Again, using Lemma
3.2, there is W that is C1 close to Z (also, C1 close to X) such that r′1 and
r′2 ∈ Per(h) are hyperbolic, and h|J : J → J is the identity map, where h is
the Poincaré map of W . □

Let p ∈ γ ∈ Per(X) and let f : Np,r → Np be the Pioincaré map of
X ∈ X(M). For any ϵ > 0, a closed small arc I is called an ϵ-periodic curve if

(a) f(I) = I,
(b) the length of f(I) is less than or equal to ϵ and the endpoints are

hyperbolic, and
(c) I is normally hyperbolic (see [12]).

Remark 3.4. Let X ∈ X(M) and I be a normally hyperbolic manifold. Then,
there is a C1 neighborhood U(X) of X such that for any Y ∈ U(X), there is
a closed small curve J close to I such that J is also normally hyperbolic (see
[4]).

The following is a vector field analogue of the result on diffeomorphisms in
[20].

Proposition 3.5. There is a residual set R ⊂ X(M) such that for any X ∈ R,
either (a) X is star or (b) X has an ϵ-periodic closed arc I.

Proof. As M is compact, there is a countable basis {Un}n∈N for the topology of
M . For any ϵ > 0, let Hn(ϵ) = {Y ∈ X(M) : Y has an ϵ-periodic closed curve
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I and the endpoints are hyperbolic}. By Remark 3.4 and the hyperbolicity

of closed orbits, Hn(ϵ) is open in X(M). Let Nn(ϵ) = X(M) − Hn(ϵ). Then
Hn(ϵ) ∪Nn(ϵ) is an open dense subset of X(M). Let

R =
⋂
n∈N

Hn(ϵ) ∪Nn(ϵ).

Then R is a residual subset of X(M). Let X ∈ R, and we assume that X is

not star. By Lemma 3.3, X ∈ Hn(ϵ) for any n ∈ N. Then X ̸∈ Nn(ϵ), and
therefore X ∈ Hn(ϵ). Thus, X has an ϵ-periodic closed arc I and the endpoints
are hyperbolic. □

Proposition 3.6. For C1 generic X ∈ X(M), if X is continuum-wise expan-
sive, then X ∈ G∗(M).

Proof. Let X ∈ R be continuum-wise expansive. We assume toward a contra-
diction that X ̸∈ G∗(M). As X is continuum-wise expansive, by Lemma 3.1,
Sing(X) = ∅. As X ∈ R, by Proposition 3.5, X has an ϵ-periodic closed arc
I. It is clear that I ⊂ M is a nontrivial continuum. Let δ = ϵ be the constant
of continuum-wise expansiveness for X. As I is an ϵ-periodic curve,

diam(f i(I)) = diam(I) ≤ δ

for all i ∈ Z, where f is the Poincaré map of X. As I is not a singleton, f is
not continuum-wise expansive. By [2, Theorem 3.2], X is not continuum-wise
expansive, which is a contradiction. □

Proof of Theorem A. LetX ∈ R be continuum-wise expansive. By Proposition
3.6, X ∈ G∗(M). By the result in [11], if Sing(X) = ∅ and X ∈ G∗(M), then
X satisfies Axiom A and has no cycles. □

4. Proof of Theorem B

In this section, it is proved that for a C1 generic vector field X, if a homo-
clinic class H(γ,X) is continuum-wise expansive, then H(γ,X) has no singular
points and is hyperbolic. The following provides information on singularities
in homoclinic classes.

Lemma 4.1. Let Λ ⊂ M be a closed Xt-invariant subset of X. If Λ is
continuum-wise expansive, then Λ ∩ Sing(X) is totally disconnected.

Proof. We assume toward a contradiction that Λ ∩ Sing(X) is not totally dis-
connected. Then for any η > 0, there is a closed set A ⊂ Λ ∩ Sing(X) such
that A is a continuum with dimA < η. Let α : A → Hom(R, 0) such that
α(x)(t) = αx(t) = id for all x ∈ A and all t ∈ R. As A ⊂ Λ ∩ Sing(X), we
have Xt(A) = A for all t ∈ R. Let δ = 2η and let X t

α(A) = {Xαx(t)(x) : ∀x ∈
A,α ∈ H(A),∀t ∈ R}. Then

diam(X t
α(A)) = diam(Xt(A)) = diam(A) < δ.
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As A is not an orbit, this is a contradiction. Thus, if Λ is continuum-wise
expansive, then Λ ∩ Sing(X) is totally disconnected. □

In general, a homoclinic class H(γ,X) has a singular point (see [3]). The
following lemma shows that if a homoclinic class H(γ,X) is continuum-wise
expansive, then it does not contain singular points.

Lemma 4.2. Let γ ∈ Per(X) be hyperbolic. If H(γ,X) is continuum-wise
expansive, then H(γ,X) ∩ Sing(X) = ∅.

Proof. We assume toward a contradiction that H(γ,X) ∩ Sing(X) ̸= ∅. As
H(γ,X) is continuum-wise expansive, by Lemma 4.1, H(γ,X) ∩ Sing(X) is
totally disconnected. This is a contradiction because M is connected. Thus,
H(γ,X) ∩ Sing(X) = ∅. □

A closed orbit γ is weak hyperbolic if for any p ∈ γ and any δ > 0, Dpf has
an eigenvalue µ such that (1− δ) ≤ |µ| ≤ (1 + δ), where f is the Poincaré map
of X.

The proof of the following lemma is similar to that in [21], which is still
unpublished. For convenience, a proof is provided here.

Lemma 4.3. Let η ∈ H(γ,X) ∩ Per(X) with η ∼ γ. If η is a weak hyperbolic
closed orbit, then there is Y that is C1 close to X such that g has a small arc J
whose endpoints are homoclinically related to p ∈ γY , where g is the Poincaré
map of Y , and γY is the continuation of γ.

Proof. Let η ∈ H(γ,X) ∩ Per(X) with η ∼ γ. We assume that η is a weak
hyperbolic closed orbit. Let q ∈ η and let f : Nq,r → Nq (for some r > 0) be
the Poincaré map of X. As η is a weak hyperbolic closed orbit of X, by Lemma
3.2, there are δ > 0 and 0 < ϵ0 < r/2 such that for a linear map L : Nq → Nq

with ∥L−Dqf∥ < δ, there is Y that is C1 closed to X such that

(a) Y (x) = X(x) if x /∈ Fq(X
t, r, π(q)),

(b) q ∈ η ∈ Per(Y ),
(c) η ∼ γY , and

(d) g(x) =

{
expq ◦ L ◦ exp−1

q (x), if x ∈ Bϵ0/4(q) ∩Nq,r,
f(x), if x /∈ Bϵ0(q) ∩Nq,r,

where Bϵ0(x) is an ϵ0 neighborhood of x ∈ M , and g : Nq,r → Nq is the
Poincaré map of Y . Then Dqg has an eigenvalue µ such that |µ| = 1. As
|µ| = 1, we may assume that µ = 1 (the other case similar). Let u be a nonzero
vector that is associated with the eigenvalue µ and ∥u∥ = ϵ0/4. Then

g(expq(u)) = expq ◦ L ◦ exp−1
q (expq(u)) = expq(u).

Let J = {tu : −ϵ0/4 ≤ t ≤ ϵ0/4} and J = expq(J). Then g|J : J → J is
the identity. Let q1 and q2 be the endpoints of J . Then, as in the proof in
[33, Proposition 3], there is h that is C1 close to g (also C1 close to f) such
that q1, q2, and q are the only periodic points of h, h|J1

is the identity, and
q1 ∼ ph ∈ γZ and q2 ∼ ph ∈ γZ , where γZ is the continuation of γ, and the
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Poincaré map h is associated with a vector field Z that is C1 close to Y . Thus,
if η is a weak hyperbolic closed orbit, then there is Z that C1 close to X such
that h has a small arc J1 whose endpoints q1 and q2 are homoclinically related
to ph ∈ γZ , where h is the Poincaré map of Z. This proves Lemma 4.3. □

Yang and Gan [39] introduced the following vector field analogue. Let
H(γ,X) be a homoclinic class. For any ϵ > 0, a closed small curve I is called
ϵ-periodically simple if

(a) f(I) = I,
(b) the length of f(I) is less than or equal to ϵ and the endpoints are

homoclinically related to p ∈ γ, and
(c) I is normally hyperbolic (see [12]), where f is the Poincaré map of X.

This slightly differs from an ϵ-simple curve in (b). It should be noted that if
γ ∈ Per(X) is a 2-weak hyperbolic closed orbit of X, then for any δ > 0, there
is an eigenvalue µ of Dpf such that (1 − 2δ) ≤ |µ| ≤ (1 + 2δ) in the notion
above.

Lemma 4.4. There is a residual set G1 ⊂ X(M) such that for any X ∈ G1 and
any hyperbolic closed orbit γ of X, we have:

(a) For any ϵ > 0, if for any C1 neighborhood U(X) of X, there is Y ∈
U(X) that has an ϵ-periodically simple curve J such that the two
endpoints of J are homoclinically related to γY , then X has a 2ϵ-
periodically simple curve L such that the two endpoints of L are ho-
moclinically related to γ (see [39, Lemma 2.1]).

(b) For any δ > 0, if for any C1 neighborhood U(X) of X, there is Y ∈
U(X) that has a periodic orbit η ∼ γY with weak hyperbolic orbit,
then X has a periodic orbit η ∼ γ with 2-weak hyperbolic orbit (see
[39, Lemma 2.1]).

(c) For any δ > 0, if X has a periodic closed orbit η ∼ γ with weak periodic
orbit, then X has a periodic orbit τ ∼ γ with weak periodic orbit whose
eigenvalues are all real (see [39, Lemma 2.3]).

Lemma 4.5. There is a residual set G2 ⊂ X(M) such that for any X ∈ G2, we
have:

(a) X is Kupka–Smale, that is, every σ ∈ Crit(X) is hyperbolic and its
stable and unstable manifolds intersect transversally (see [16]).

(b) H(γ,X) = C(γ,X) for some hyperbolic closed orbit γ (see [7]).

Lemma 4.6. There is a residual set G3 ⊂ X(M) such that for any X ∈ G3, if
H(γ,X) is continuum-wise expansive, then every η ∈ H(γ,X) ∩ Per(X) with
η ∼ γ is not a weak hyperbolic closed orbit of X.

Proof. Let X ∈ G3 = G1 ∩ G2, and let H(γ,X) be continuum-wise expansive.
We assume that there is η ∈ H(γ,X)∩Per(X) with η ∼ γ such that η is a weak
hyperbolic closed orbit. By Lemma 4.3, for any ϵ > 0, there is Y that is C1 close
to X such that g has a small arc J whose endpoints are homoclinically related
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to pY ∈ γY , and is an ϵ-periodically simple curve, where g is the Poincaré
map of Y and γY is the continuation of γ. By Lemmas 4.4 and 4.5, f has a
small arc L ⊂ H(γ,X) = C(γ,X) whose endpoints are homoclinically related
to p ∈ γ, and is a 2ϵ-periodically simple curve. Let δ = 2ϵ be the constant
of continuum-wise expansiveness. As L ⊂ H(γ,X) is a 2ϵ-periodically simple
curve, f i(L) = L for all i ∈ Z. Thus, diam(f i(L)) = diamL ≤ δ for all i ∈ Z.
It is clear that L is not a singleton. Thus, by [2, Theorem 3.2], H(γ,X) is not
continuum-wise expansive, which is a contradiction. □

The following is a vector field analogue of the result in [38]. It provides
information on nonhyperbolic homoclinic classes if a homoclinic class H(γ,X)
does not contain any singular points.

Lemma 4.7 ([38]). There is a residual set G4 ⊂ X(M) such that for any
X ∈ G4, if a homoclinic class H(γ,X) does not contain any singular points
and H(γ,X) is not hyperbolic, then there is η ∈ H(γ,X)∩Per(X) with η ∼ γ
such that η is a weak hyperbolic periodic orbit of X.

Proof of Theorem B. Let X ∈ G3 ∩ G4 and H(γ,X) be continuum-wise expan-
sive. We assume that H(γ,X) is not hyperbolic. As H(γ,X) is continuum-wise
expansive X ∈ G4, by Lemma 4.7, there is η ∈ H(γ,X) ∩ Per(X) with η ∼ γ
such that η is a weak hyperbolic closed orbit of X. As H(γ,X) is continuum-
wise expansive, by Lemma 4.6, X has no weak hyperbolic closed orbits. This is
a contradiction. Thus, C1 generically, if H(γ,X) is continuum-wise expansive,
then H(γ,X) is hyperbolic. □

5. Divergence-free vector fields

Let M be a compact, connected, and smooth n(≥ 3)-dimensional Riemann-
ian manifold endowed with a volume form with respect to Lebesgue measure
µ. Let Xµ(M) denote the space of C1 divergence-free vector fields, and we
consider the usual C1 Whitney topology on this space.

A vector field X is called divergenc-free if its divergence is equal to zero.
It is known that by Liouville’s formula, a flow Xt is volume preserving if and
only if the corresponding X ∈ Xµ(M) is divergence-free. Ferreira [10] proved
that if a divergence-free vector field X belongs to the C1 interior of the set of
all expansive divergence-free vector fields, then it is Anosov. Lee [19] proved
that if a divergence-free vector field X belongs to the C1 interior of the set of
all continuum-wise expansive divergence-free vector fields, then it is Anosov.
Bessa, Lee, and Wen [6] proved that C1 generically, if a divergence-free vector
field X is expansive, then it is Anosov. Here, the following analogue is proved.

Theorem C. For C1 generic X ∈ Xµ(M), if a vector field X is continuum-
wise expansive, then it is Anosov.

Proof. By the result in [5], for a C1 generic vector field X ∈ Xµ(M), M =
H(γ,X). As in the proof of Theorem B, we have that H(γ,X) is hyperbolic.
Thus, C1 generically, if X is continuum-wise expansive, then X is Anosov. □
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