DOI QR코드

DOI QR Code

Protective Coatings for Accident Tolerant Fuel Claddings - A Review

  • Rofida Hamad Khlifa (National Research Tomsk Polytechnic University) ;
  • Nicolay N. Nikitenkov (National Research Tomsk Polytechnic University)
  • Received : 2022.08.12
  • Accepted : 2022.11.18
  • Published : 2023.03.31

Abstract

The Fukushima accident in 2011 revealed some major flaws in traditional nuclear fuel materials under accidental conditions. Thus, the focus of research has shifted toward "accident tolerant fuel" (ATF). The aim of this approach is to develop fuel material solutions that lead to improved reactor safety. The application of protective coatings on the surface of nuclear fuel cladding has been proposed as a near-term solution within the ATF framework. Many coating materials are being developed and evaluated. In this article, an overview of different zirconium-based alloys currently in use in the nuclear industry is provided, and their performances in normal and accidental conditions are discussed. Coating materials proposed by different institutions and organizations, their performances under different conditions simulating nuclear reactor environments are reviewed. The strengths and weaknesses of these coatings are highlighted, and the challenges addressed by different studies are summarized, providing a basis for future research. Finally, technologies and methods used to synthesize thin-film coatings are outlined.

Keywords

References

  1. International Atomic Energy Agency, "Accident Tolerant Fuel Concepts for Light Water Reactors", Proc. of a Technical Meeting Held at Oak Ridge National Laboratories, United States of America (2014). 
  2. M. Alrwashdeh and S.A. Alameri, "Preliminary Neutronic Analysis of Alternative Cladding Materials for APR-1400 Fuel Assembly", Nucl. Eng. Des., 384, 111486 (2021). 
  3. S. Bragg-Sitton, "Development of Advanced Accident-Tolerant Fuels for Commercial LWRs", Nucl. News, 57(3), 83-91 (2014). 
  4. J. Bischoff, C. Delafoy, C. Vauglin, P. Barberis, C. Roubeyrie, D. Perche, D. Duthoo, F. Schuster, J.C. Brachet, E.W. Schweitzer, and K. Nimishakavi, "AREVA NP's Enhanced Accident-Tolerant Fuel Developments: Focus on Cr-coated M5 Cladding", Nucl. Eng. Technol., 50(2), 223-228 (2018).  https://doi.org/10.1016/j.net.2017.12.004
  5. M. Sevecek and M. Valach, "Evaluation Metrics Applied to Accident Tolerant Fuel Cladding Concepts for VVER Reactors", Acta Polytech. CTU Proc., 4, 89-96 (2016).  https://doi.org/10.14311/AP.2016.4.0089
  6. L.J. Ott, K.R. Robb, and D.Wang, "Preliminary Assessment of Accident-Tolerant Fuels on LWR Performance During Normal Operation and Under DB and BDB Accident Conditions", J. Nucl. Mater., 448(1-3), 520-533 (2014).  https://doi.org/10.1016/j.jnucmat.2013.09.052
  7. World Nuclear Association. October 2021. "Nuclear Fuel and Its Fabrication." World Nuclear Association Information Library. Accessed Aug. 4 2022. Available from: https://world-nuclear.org/information-library/nuclear-fuel-cycle/conversion-enrichment-and-fabrication/fuel-fabrication.aspx. 
  8. H.G. Rickover, L.D. Geiger, and B. Lustman. History of the Development of Zirconium Alloys for Use in Nuclear Reactors, Energy Research and Development Administration Technical Report, TID-26740 (1975). 
  9. H.S. Gadiyar, "Corrosion of Zirconium Base Alloys-An Overview", Proc. of the Symposium on Zirconium Alloys for Reactor Component, 148-154, Bhabha Atomic Research Centre, Bombay, India (1992). 
  10. B. Cox, "Some Thoughts on the Mechanisms of In-reactor Corrosion of Zirconium Alloys", J. Nucl. Mater., 336(2-3), 331-368 (2005).  https://doi.org/10.1016/j.jnucmat.2004.09.029
  11. K.A. Terrani, S.J. Zinkle, and L.L. Snead, "Advanced Oxidation-resistant Iron-based Alloys for LWR Fuel Cladding", J. Nucl. Mater., 448(1-3), 420-435 (2014).  https://doi.org/10.1016/j.jnucmat.2013.06.041
  12. S. Kass. The Development of the Zircaloys, Westinghouse Electric Corporation and Bettis Atomic Power Laboratory Technical Report, WAPD-T-1549 (1962). 
  13. A.T. Motta, A. Couet, and R.J. Comstock, "Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding", Annu. Rev. Mater. Res., 45, 311-343 (2015).  https://doi.org/10.1146/annurev-matsci-070214-020951
  14. D.G. Cacuci, "Volume 1: Nuclear Engineering Fundamentals", in: Handbook of Nuclear Engineering, Springer Science & Business Media, Berlin (2010). 
  15. A.V. Nikulina, V.A. Markelov, and M.M. Peregud, "Zirconium Alloy E635 as a Material for Fuel rod Cladding and Other Components of VVER and RBMK Cores", Proc. of Zirconium in the Nuclear Industry: Eleventh International Symposium, American Society for Testing and Materials, PA, USA (1996). 
  16. V. Markelov, V. Novikov, A. Mikulina, V. Konkov, M. Sablin, A. Novoselov, and J. Kobylyansky, "Application of E635 Alloy as Structural Components of WWER-1000 Fuel Assemblies", Proc. of the Int. Conference on WWER Fuel Performance, Modelling and Experimental Support, September 19-23, 2005, Bulgaria. 
  17. P. Shebaldov, M. Peregud, A. Nikulina, Y. Bibilashvili, A. Lositski, N. Kuz'menko, V. Belov, and A. Novoselov, "E110 Alloy Cladding Tube Properties and Their Interrelation With Alloy Structure-Phase Condition and Impurity Content", Proc. of the Zirconium in the Nuclear Industry: Twelfth International Symposium, American Society for Testing and Materials, PA, USA (2000). 
  18. Z. Hozer, C. Gyori, L. Matus, and M. Horvath, "Ductile-to-Brittle Transition of Oxidised Zircaloy-4 and E110 Claddings", J. Nucl. Mater., 373(1-3), 415-423 (2008).  https://doi.org/10.1016/j.jnucmat.2007.07.002
  19. V. Novikov, B. Nesterov, V. Troyanov, A. Izhutov, A. Burukin, and E. Shahmut, "Out of Reactor Investigation Corrosive Characteristics Cladding of new Zirconium Alloys as Applied to Conditions Reactor-Plant WWER-1200 (AES-2006) and Program Irradiation Tests of This Alloys", Proc. of the International Conference on WWER Fuel Performance, Modelling and Experimental Support, Bulgaria (2011). 
  20. V. Novikov, V. Markelov, A. Gusev, A. Malgin, A. Kabanov, and Y. Pimenov, "Some Results on the Properties Investigations of Zirconium Alloys for WWER-1000 Fuel Cladding", Proc. of the International Conference on WWER Fuel Performance, Modelling and Experimental Support, Bulgaria (2011). 
  21. J.P. Foster, H.K. Yueh, and R.J. Comstock, "ZIRLOTM Cla-dding Improvement", J. Astm Int., 5(7), 1-13 (2008).  https://doi.org/10.1520/JAI101188
  22. M. Le Saux, V. Vandenberghe, J.C. Brachet, P. Crebier, D. Gilbon, J.P. Mardon, P. Jacques, and A. Cabrera, "Influence of Steam Pressure on the High Temperature Oxidation and Post-cooling Mechanical Properties of Zircaloy-4 and M5 Cladding (LOCA Conditions)", Proc. of Zirconium in the Nuclear Industry:17th International Symposium, 1002-1053, American Society for Testing and Materials, West Conshohocken, PA (2015). 
  23. J.C. Brachet, L. Portier, T. Forgeron, J. Hivroz, D. Hamon, T. Guilbert, T. Bredel, P. Yvon, J.P. Mardon, and P. Jacques, "Influence of Hhydrogen Content on the α/β Phase Transformation Temperatures and on the Thermal-Mechanical Behavior of Zy-4, M4 (ZrSnFeV), and M5TM(ZrNbO) Alloys During the First Phase of LOCA Transient", in: Zirconium in the Nuclear Industry: Thirteenth International Symposium, G.D. Moan and P. Rudling, eds., 673-701, ASTM International, West Conshohocken, PA (2002). 
  24. A. Wakamatsu, K. Nunokawa, M. Nakano, M. Hamasaki, Y. Uno, and T. Kawagoe, "Development of Advanced Fuel and Core for High Reliability and High Performance", Mitsubishi. Juko Giho, 43(4), 20-24 (2006). 
  25. H.G. Kim, B.K. Choi, S.Y. Park, Y.I. Jung, D.J. Park, and J.Y. Park, "Post Irradiation Examination of HANA Claddings After Research Reactor Test up to 34 GWD/MTU", J. Nucl. Mater., 426(1-3), 173-181 (2012).  https://doi.org/10.1016/j.jnucmat.2012.03.042
  26. H.G. Kim, J.Y. Park, Y.H. Jeong, Y.H. Koo, J.S. Yoo, Y.K. Mok, Y.H. Kim, and J.M. Suh, "In-pile Performance of HANA Cladding Tested in Halden Reactor", Nucl. Eng. Technol., 46(3), 423-430 (2014).  https://doi.org/10.5516/NET.07.2013.093
  27. 101 Diagrams. "Phase Diagram of Water." 101 Diagrams Homepage. Accessed Jan. 18 2022. Available from: https://www.101diagrams.com/phase-diagramsof-water/. 
  28. S.J Zinkle and G.S. Was, "Materials Challenges in Nuclear Energy", Acta Mater., 61(3), 735-758 (2013).  https://doi.org/10.1016/j.actamat.2012.11.004
  29. C. Tang, M. Stueber, H.J. Seifert, and M. Steinbrueck, "Protective Coatings on Zirconium-based Alloys as Accident-Tolerant Fuel (ATF) Claddings", Corros. Rev., 35(3), 141-165 (2017).  https://doi.org/10.1515/corrrev-2017-0010
  30. A. Nechaev, Corrosion of Zirconium Alloys in Nuclear Power Plants, International Atomic Eenrgy Agency, IAEA-TECDOC-684 (1993). 
  31. T.R. Allen, R.J.M. Konings, and A.T. Motta, "Corrosion of Zirconium Alloys", in: Comprehensive Nuclear Materials, R.M.J Konings., ed., vol. 5, 49-68, Elsevier, Amsterdam (2012). 
  32. M. Moalem and D.R. Olander, "Oxidation of Zircaloy by Steam", J. Nucl. Mater., 182, 170-194 (1991).  https://doi.org/10.1016/0022-3115(91)90428-A
  33. G. Schanz, B. Adroguer, and A. Volchek, "Advanced Treatment of Zircaloy Cladding High-Temperature Oxidation in Severe Accident Code Calculations: Part I. Experimental Database and Basic Modeling", Nucl. Eng. Des., 232(1), 75-84 (2004).  https://doi.org/10.1016/j.nucengdes.2004.02.013
  34. J.C. Brachet, V. Vandenberghe-Maillot, L. Portier, D. Gilbon, A. Lesbros, N. Waeckel, and J.P. Mardon, "Hydrogen Content, Preoxidation, and Cooling Scenario Effects on Post-Quench Microstructure and Mechanical Properties of Zircaloy-4 and M5® Alloys in LOCA Conditions", in: Zirconium in the Nuclear Industry: 15th International Symposium, ASTM International, 91-118, West Conshohocken, PA (2009). 
  35. M. Steinbruck, J. Birchley, A.V. Boldyrev, A.V. Goryachev, M. Grosse, T.J. Haste, Z. Hzer, A.E. Kisselev, V.I. Nalivaev, V.P. Semishkin, L. Sepold, J. Stuckert, N. Ver, and M.S. Veshchunov, "High-Temperature Oxidation and Quench Behaviour of Zircaloy-4 and E110 Cladding Alloys", Prog. Nucl. Energy, 52(1), 19-36 (2010).  https://doi.org/10.1016/j.pnucene.2009.07.012
  36. M. Steinbruck, N. Ver, and M. Grose, "Oxidation of Advanced Zirconium Cladding Alloys in Steam at Temperatures in the Range of 600-1200℃", Oxid. Met., 76(3-4), 215-232 (2011).  https://doi.org/10.1007/s11085-011-9249-3
  37. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, and L.L. Snead, "Accident Tolerant Fuels for LWRs: A Perspective", J. Nucl. Mater., 448(1-3), 374-379 (2014).  https://doi.org/10.1016/j.jnucmat.2013.12.005
  38. P. Van Uffelen, R.J.M. Konings, C. Vitanza, and J. Tulenko, "Analysis of Reactor Fuel Rod Behavior", in: Handbook of Nuclear Engineering, 1519-1627, Springer Science and Business Media, Boston (2010). 
  39. A.G. Malgin, V.A. Markelov, V.V. Novikov, and I.A. Shelepov, "Research of High-Temperature Oxidation Behavior of E110 opt and E110М Sponge Based Zirconium Alloys", Proc. of Top Fuel, 239, 1-10 (2018). 
  40. R.E. Pawel, J.V. Cathcart, and R.A. McKee, "The Kinetics of Oxidation of Zircaloy-4 in Steam at High Temperatures", J. Electrochem. Soc., 126(7), 1105 (1979). 
  41. Y. Yan, B.E. Garrison, M. Howell, and G.L. Bell, "High-Temperature Oxidation Kinetics of Sponge-based E110 Cladding Alloy", J. Nucl. Mater., 499, 595-612 (2018).  https://doi.org/10.1016/j.jnucmat.2017.10.067
  42. Y. Katoh, L.L. Snead, C.H. Henager Jr., T. Nozawa, T. Hinoki, A. Ivekovic, S. Novak, and S.M. Gonzalez de Vincente, "Current Status and Recent Research Achievements in SiC/SiC Composites", J. Nucl. Mater., 455(1-3), 387-397 (2014).  https://doi.org/10.1016/j.jnucmat.2014.06.003
  43. X.G. Zhou, H.L. Wang, and S. Zhao, "Progress of SiCf/SiC Composites for Nuclear Application", Adv. Ceram., 37, 151-167 (2016). 
  44. E. Kashkarov, B. Afornu, D. Sidelev, M. Krinitcyn, V. Gouws, and A. Lider, "Recent Advances in Protective Coatings for Accident Tolerant Zr-based Fuel Claddings", Coatings, 11(5), 557 (2021). 
  45. Q.S. Chen, C.H. Liu, R.Q. Zhang, H.Y. Yang, T.G. Wei, Y. Wang, Z. Li, L.X. He, J. Wang, L. Wang, J.P. Long, and H. Chang, "Microstructure and High-Temperature Steam Oxidation Properties of Thick Cr Coatings Prepared by Magnetron Sputtering for Accident Tolerant Fuel Claddings: The Role of Bias in the Deposition Process", Corros. Sci., 165, 108378 (2020). 
  46. A. Abe, T. Carluccio, P. Piovezan, C. Giovedi, and M.R. Martins, "Preliminary Neutronic Assessment for ATF (Accident Tolerant Fuel) Based on Iron Alloy", Proc. of 2015 International Nuclear Atlantic Conference, October 4-9, 2015, SP, Brazil. 
  47. Nuclear Energy Agency. State-of-the-art Report on Light Water Reacter Accident-Tolerant Fuels, NEA Report, NEA No. 7317 (2018). 
  48. J.C. Brachet, M. Le Saux, M. Le Flem, S. Urvoy, E. Rouesne, T. Guilbert, C. Cobac, F. Lahogue, J. Rousselot, M. Tupin, P. Billaud, C. Hossepied, F. Schuster, F. Lomello, A. Billard, G. Velisa, E. Monsifrot, J. Bischoff, and A. Ambard, "On-going Studies at CEA on Chromium Coated Zirconium Based Nuclear Fuel Claddings for Enhanced Accident Tolerant LWRs Fuel", Proc. of TopFuel 2015, September 13-19, 2015, Zurich, Switzerland. 
  49. J.H. Park, H.G. Kim, J. Park, Y. Jung, D.J. Park, and Y.H. Koo, "High Temperature Steam-Oxidation Behavior of Arc Ion Plated Cr Coatings for Accident Tolerant Fuel Claddings", Surf. Coat. Technol., 280, 256-259 (2015).  https://doi.org/10.1016/j.surfcoat.2015.09.022
  50. E. Alat, J. Hu, D.E. Wolfe, and A.T. Motta, "Corrosion and Ion Irradiation Behavior of Ceramic-Coated Nuclear Fuel Cladding", in: Zirconium in the Nuclear Industry: 19th International Symposium, A.T. Motta and S.K. Yagnik, eds., 149-171, ASTM International, West Conshohocken, PA (2021). 
  51. K.A. Terrani, "Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges", J. Nucl. Mater., 501, 13-30 (2018).  https://doi.org/10.1016/j.jnucmat.2017.12.043
  52. S.J. Zinkle and L.L. Snead, "Designing Radiation Resistance in Materials for Fusion Energy", Annu. Rev. Mater. Res., 44, 241-267 (2014).  https://doi.org/10.1146/annurev-matsci-070813-113627
  53. R. Van Nieuwenhove, V. Andersson, J. Balak, and B. Oberlander, "In-Pile Testing of CrN, TiAlN, and AlCrN Coatings on Zircaloy Cladding in the Halden Reactor", in: Zirconium in the Nuclear Industry: 18th International Symposium, STP1597, 965-982, ASTM International, West Conshohocken, PA (2018). 
  54. K. Sridharan, S.P. Harrington, A.K. Johnson, J.R. Licht, M.H. Anderson, and T.R. Allen, "Oxidation of Plasma Surface Modified Zirconium Alloy in Pressurized High Temperature Water", Mater. Des., 28(4), 1177-1185 (2007).  https://doi.org/10.1016/j.matdes.2006.01.019
  55. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, and Y.H. Koo, "Microstructure and Mechanical Strength of Surface ODS Treated Zircaloy-4 Sheet Using Laser Beam Scanning", Nucl. Eng. Technol., 46(4), 521-528 (2014).  https://doi.org/10.5516/NET.07.2014.027
  56. H.G. Kim, J.H. Yang, W.J. Kim, and Y.H. Koo, "Development Status of Accident-tolerant Fuel for Light Water Reactors in Korea", Nucl. Eng. Technol., 48(1), 1-15 (2016).  https://doi.org/10.1016/j.net.2015.11.011
  57. P.J. Doyle, S.S. Raiman, R. Rebak, and K.A. Terrani, "Characterization of the Hydrothermal Corrosion Behavior of Ceramics for Accident Tolerant Fuel Cladding", in: Proceedings of the 18th International Conference on Environmental Degradadation Materials Nuclear Power Syststems-Water Reactors, 1485-1496, Springer, Berlin (2019). 
  58. B.A. Pint, K.A. Terrani, Y. Yamamoto, and L.L. Snead, "Material Selection for Accident Tolerant Fuel Cladding", Metall. Mater. Trans. E, 2(3), 190-196 (2015).  https://doi.org/10.1007/s40553-015-0056-7
  59. B.R. Maier, B.L. Garcia-Diaz, B. Hauch, L.C. Olson, R.L. Sindelar, and K. Sridharan, "Cold Spray Deposition of Ti2AlC Coatings for Improved Nuclear Fuel Cladding", J. Nucl. Mater., 466, 712-717 (2015).  https://doi.org/10.1016/j.jnucmat.2015.06.028
  60. H. Yeom, B. Hauch, G. Cao, B. Garcia-Diaz, M. Martinez-Rodriguez, H. Colon-Mercado, L. Olson, and K. Sridharan, "Laser Surface Annealing and Characterization of Ti2AlC Plasma Vapor Deposition Coating on Zirconium-Alloy Substrate", Thin Solid Films, 615, 202-209 (2016).  https://doi.org/10.1016/j.tsf.2016.07.024
  61. D.A. Roberts, "Magnetron Sputtering and Corrosion of Ti-Al-C and Cr-Al-C Coatings for Zr-Alloy Nuclear Fuel Cladding", M.S. Thesis, University of Tennessee-Knoxville (2016). 
  62. E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, and D.E. Wolfe, "Ceramic Coating for Corrosion (C3) Resistance of Nuclear Fuel Cladding", Surf. Coat. Technol., 281, 133-143 (2015).  https://doi.org/10.1016/j.surfcoat.2015.08.062
  63. K. Lambrinou, M. Verwerft, J. Vleugels, A. Weisenburger, C. Lorrette, Y. de Carlan, F.D. Fonzo, M. Barsoum, A. Kohyama, and J. marrow, "Innovative Accident-tolerant Fuel Cladding Materials: The H2020 IL Trovatore Perspective", Proc. of 2017 Water Reactor Fuel Performance Meeting, September 10-14, 2017, Jeju Island. 
  64. D.J. Tallman, E.N. Hoffman, E.N. Caspi, B.L. Garcia-Diaz, G. Kohse, R.L. Sindelar, and M.W. Barsoum, "Effect of Neutron Irradiation on Select MAX Phases", Acta Mater., 85, 132-143 (2015).  https://doi.org/10.1016/j.actamat.2014.10.068
  65. F. Fejt, M. Sevecek, J. Frybort, and O. Novak, "Study on Neutronics of VVER-1200 With Accident Tolerant Fuel Cladding", Ann. Nucl. Energy, 124, 579-591 (2019).  https://doi.org/10.1016/j.anucene.2018.10.040
  66. I. Younker and M. Fratoni, "Neutronic Evaluation of Coating and Cladding Materials for Accident Tolerant Fuels", Prog. Nucl. Energy, 88, 10-18 (2016).  https://doi.org/10.1016/j.pnucene.2015.11.006
  67. J.C. Brachet, I. Idarraga-Trujillo, M. Le Flem, M. Le Saux, V. Vandenberghe, S. Urvoy, E. Rouesne, T. Guilbert, C. Toffolon-Masclet, M. Tupin, C. Phalippou, F. Lomello, F. Schuster, A. Billard, G. Velisa, C. Ducros, and F. Sanchette, "Early Studies on Cr-Coated Zircaloy-4 as Enhanced Accident Tolerant Nuclear Fuel Claddings for Light Water Reactors", J. Nucl. Mater., 517, 268-285 (2019).  https://doi.org/10.1016/j.jnucmat.2019.02.018
  68. E.B. Kashkarov, D.V. Sidelev, M.S. Syrtanov, C. Tang, and M. Steinbruck, "Oxidation Kinetics of Cr-coated Zirconium Alloy: Effect of Coating Thickness and Microstructure", Corros. Sci., 175, 108883 (2020). 
  69. E. Kashkarov, D.V. Sidelev, M. Rombaeva, M.S. Syrtanov, and G.A. Bleykher, "Chromium Coatings Deposited by Cooled and Hot Target Magnetron Sputtering for Accident Tolerant Nuclear Fuel Claddings", Surf. Coat. Technol., 389, 125618 (2020). 
  70. J.C. Brachet, E. Rouesne, J. Ribis, T. Guilbert, S. Urvoy, G. Nony, C. Toffolon-Masclet, M. Le Saux, N. Chaabane, H. Palancher, A. David, J. Bischoff, J. Augereau, and E. Pouillier, "High Temperature Steam Oxidation of Chromium-coated Zirconium-based Alloys: Kinetics and Process", Corros. Sci., 167, 108537 (2020). 
  71. J. Bischoff, C. Vauglin, C. Delafoy, P. Barberis, D. Perche, B. Guerin, J.P. Vassault, and J.C. Brachet, "Development of Cr-coated Zirconium Alloy Cladding for Enhanced Accident Tolerance", Proc. of TopFuel 2016-Light Water Reactor (LWR) Fuel Performance Meeting, September 11-15, 2016, Boise, Idaho. 
  72. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, and Y.H. Koo, "High-Temperature Oxidation Behavior of Cr-coated Zirconium Alloy", Proc. of TopFuel 2013-Light Water Reactor (LWR) Fuel Performance Meeting, 842-846, September 15-19, 2013, Charlotte, North Carolina. 
  73. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, and Y.H. Koo, "Adhesion Property and High-Temperature Oxidation Behavior of Cr-coated Zircaloy-4 Cladding Tube Prepared by 3D Laser Coating", J. Nucl. Mater., 465, 531-539 (2015).  https://doi.org/10.1016/j.jnucmat.2015.06.030
  74. J.M. Kim, T.H. Ha, I.H. Kim, and H.G. Kim, "Microstructure and Oxidation Behavior of CrAl Laser-Coated Zircaloy-4 Alloy", Metals, 7(2), 59 (2017). 
  75. J. Warda, D. Bowden, E. Prestat, S. Holdsworth, D. Stewart, M.W. Barsoum, M. Preuss, and P. Frankel, "Corrosion Performance of Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC MAX Phases in Simulated Primary Water Conditions", Corros. Sci., 139, 444-453 (2018).  https://doi.org/10.1016/j.corsci.2018.04.034
  76. E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, and D.E. Wolfe, "Multilayer (TiN, TiAlN) Ceramic Coatings for Nuclear Fuel Cladding", J. Nucl. Mater., 478, 236-244 (2016).  https://doi.org/10.1016/j.jnucmat.2016.05.021
  77. A. Wu, J. Ribis, J.C. Brachet, and E. Clouet, "Behaviour of Ion Irradiated Chromium Coatings on Zircaloy-4 Substrate", Proc. of the Nuclear Materials Conference 2016-NUMAT 2016, November 2016, Montpellier, France. 
  78. A. Wu, J. Ribis, J.C. Brachet, E. Clouet, F. Lepretre, E. Bordas, and B. Arnal, "HRTEM and Chemical Study of an Ion-irradiated Chromium/Zircaloy-4 Interface", J. Nucl. Mater., 504, 289-299 (2018).  https://doi.org/10.1016/j.jnucmat.2018.01.029
  79. A.S. Kuprin, V.A. Belous, V.N. Voyevodin, R.L. Vasilenko, V.D. Ovcharenko, G.D. Tolstolutskaya, I.E. Kopanets, and I.V. Kolodiy, "Irradiation Resistance of Vacuum Arc Chromium Coatings for Zirconium Alloy Fuel Claddings", J. Nucl. Mater., 510, 163-167 (2018).  https://doi.org/10.1016/j.jnucmat.2018.07.063
  80. A.S. Kuprin, R.L. Vasilenko, G.D. Tolstolutskaya, V.N. Voyevodin, V.A. Belous, V.D. Ovcharenko, and I.E. Kopanets, "Irradiation Resistance of Chromium Coatings for ATFC in the Temperature Range 300-550℃", J. Nucl. Mater., 549, 152908 (2021). 
  81. E. Aydogan, J.S. Weaver, S.A. Maloy, O.El-Atwani, Y.Q. Wang, and N.A. Mara, "Microstructure and Mechanical Properties of FeCrAl Alloys Under Heavy Ion Irradiations", J. Nucl. Mater., 503, 250-262 (2018).  https://doi.org/10.1016/j.jnucmat.2018.03.002
  82. R. Van Nieuwenhove, "IFA-774: The First In-pile Test With Coated Fuel Rods", Proc. of Enlarged Halden Program Group Meeting, HWR-1106, Institutt for Energiteknikk, OECD Halden Reactor Project, Roros, Norway (2014). 
  83. M. Imtyazuddin, A.H. Mir, M.A. Tunes, and V.M. Vishnyakov, "Radiation Resistance and Mechanical Properties of Magnetron-Sputtered Cr2AlC Thin Films", J. Nucl. Mater., 526, 151742 (2019). 
  84. C. Tang, M.K. Grosse, P. Trtik, M. Steinbruck, M. Stuber, and H.J. Seifert, "H2 Permeation Behavior of Cr2AlC and Ti2AlC MAX Phase Coated Zircaloy-4 by Neutron Radiography", Acta Polytechnica, 58(1), 69-76 (2018).  https://doi.org/10.14311/AP.2018.58.0069
  85. J.J. Powers, N.M. George, G.I. Maldonado, and A. Worrall. Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs, Oak Ridge National Laboratory Report, ORNL/TM-2015/415 (2015). 
  86. G.J. Youinou and R.S. Sen, "Impact of Accident-Tolerant Fuels and Claddings on the Overall Fuel Cycle: A Preliminary Systems Analysis", Nucl. Technol., 188(2), 123-138 (2014).  https://doi.org/10.13182/NT14-22
  87. S. Chen and C. Yuan, "Neutronic Analysis on Potential Accident Tolerant Fuel-Cladding Combination U3Si2-FeCrAl", Sci. Technol. Nucl. Install., 2017, 3146985 (2017). 
  88. N.M. George, K. Terrani, J. Powers, A. Worrall, and I. Maldonado, "Neutronic Analysis of Candidate Accident-Tolerant Cladding Concepts in Pressurized Water Reactors", Ann. Nucl. Energy, 75, 703-712 (2015).  https://doi.org/10.1016/j.anucene.2014.09.005
  89. H.B. Ma, J. Yan, Y.H. Zhao, T. Liu, Q.S. Ren, Y.H. Liao, J.D. Zuo, G. Liu, and M.Y. Yao, "Oxidation Behavior of Cr-coated Zirconium Alloy Cladding in High-Temperature Steam Above 1,200℃", npj Mater. Degrad., 5, 7 (2021). 
  90. T. Dabney, G. Johnson, H. Yeom, B. Maier, J. Walters, and K. Sridharan, "Experimental Evaluation of Cold Spray FeCrAl Alloys Coated Zirconium-Alloy for Potential Accident Tolerant Fuel Cladding", Nucl. Mater. Energy, 21, 100715 (2019). 
  91. J.G. Gigax, M. Kennas, H. Kim, B.R. Maier, H. Yeom, G.O. Johnson, K. Sridharan, and L. Shao, "Interface Reactions and Mechanical Properties of FeCrAl-coated Zircaloy-4", J. Nucl. Mater., 519, 57-63 (2019).  https://doi.org/10.1016/j.jnucmat.2019.03.004
  92. D.J. Park, H.G. Kim, Y.I. Jung, J.H. Park, J.H.Yang, and Y.H. Koo, "Behavior of an Improved Zr Fuel Cladding With Oxidation Resistant Coating Under Loss-of-Coolant Accident Conditions", J. Nucl. Mater., 482, 75-82 (2016).  https://doi.org/10.1016/j.jnucmat.2016.10.021
  93. C. Tang, M. Steinbrueck, M. Grosse, S. Ulrich, M. Stueber, and H.J. Seifert, "Improvement of the High-Temperature Oxidation Resistance of Zr Alloy Cladding by Surface Modification With Aluminum-Containing Ternary Carbide Coatings", Proc. of the 2018 International Congress on Advances in Nuclear Power Plants, April 8-11, 2018, Charlotte, North Carolina. 
  94. N.A.P. Kiran Kumar, J.N. Stevens, M. Savela, J. Strumpell, and B. Mays, "AREVA Enhanced Accident Tolerant Fuel Program: Current Results and Future Plans", Proc. of the TopFuel 2016: LWR Fuels With Enhanced Safety and Performance, September 11-15, 2016, Boise, Idaho. 
  95. Z. Wang, G. Ma, L. Liu, L. Wang, P. Ke, Q. Xue, and A. Wang, "High-Performance Cr2AlC MAX Phase Coatings: Oxidation Mechanisms in the 900-1,100℃ Temperature Range", Corros. Sci., 167, 108492 (2020). 
  96. W. Li, Z. Wang, J. Shuai, B. Xu, A. Wang, and P. Ke, "A High Oxidation Resistance Ti2AlC Coating on Zirlo Substrates for Loss-of Coolant Accident Conditions", Ceram. Int., 45(11), 13912-13922 (2019).  https://doi.org/10.1016/j.ceramint.2019.04.089
  97. C. Tang, M. Steinbrueck, M. Stuebar, M. Grosse, X. Yu, S. Ulrich, and H.J. Seifert, "Deposition, Characterization and High-Temperature Steam Oxidation Behavior of Single-Phase Ti2AlC-coated Zircaloy-4", Corros. Sci., 135, 87-98 (2018).  https://doi.org/10.1016/j.corsci.2018.02.035
  98. K. Daub, R. Van Nieuwenhove, and H. Nordin, "Investigation of the Impact of Coatings on Corrosion and Hydrogen Uptake of Zircaloy-4", J. Nucl. Mater., 467(Part 1), 260-270 (2015).  https://doi.org/10.1016/j.jnucmat.2015.09.041
  99. J. Krejci, M. Sevecek, L. Cvrcek, J. Kabatova, and F. Manoch, "Chromium and Chromium Nitride Coated Cladding for Nuclear Reactor Fuel", Proc. of the 20th International Corrosion Congress, EUROCORR, September 3-7, 2017, Prague, Czech Republic. 
  100. J. Krejci, M. Sevecek, J. Kabatova, F. Manoch, J. Koci, L. Cvrcek, J. Malek, S. Krum, P. Sutta, P. Bublikova, P. Halodova, and H.K. Namburi, "Experimental Behavior of Chromium-based Coatings", Proc. of the TopFuel 2018, 1-13, 2018, Prague, Czech Republic. 
  101. C. Meng, L. Yang, Y. Wu, J. Tan, W. Dang, X. He, and X. Ma, "Study of the Oxidation Behavior of CrN Coating on Zr Alloy in Air", J. Nucl. Mater., 515, 354-369 (2019).  https://doi.org/10.1016/j.jnucmat.2019.01.006
  102. Y. Wang, W. Zhou, Q. Wen, X. Ruan, F. Luo, G. Bai, Y. Qing, D. Zhu, Z. Huang, Y. Zhang, T. Liu, and R. Li, "Behavior of Plasma Sprayed Cr Coatings and FeCrAl Coatings on Zr Fuel Cladding Under Lossof-Coolant Accident Conditions", Surf. Coat. Technol., 344, 141-148 (2018).  https://doi.org/10.1016/j.surfcoat.2018.03.016
  103. K.A. Terrani, C.M. Parish, D. Shin, and B.A. Pint, "Protection of Zirconium by Alumina- and Chromia-Forming Iron Alloys Under High-Temperature Steam Exposure", J. Nucl. Mater., 438(1-3), 64-71 (2013).  https://doi.org/10.1016/j.jnucmat.2013.03.006
  104. K. Bhanumurthy, G. Kale, and S.K. Khera, "Reaction Diffusion in the Zirconium-Iron System", J. Nucl. Mater., 185(2), 208-213 (1991).  https://doi.org/10.1016/0022-3115(91)90337-7
  105. W. Zhong, P.A. Mouche, X. Han, B.J. Heuser, K.K. Mandapaka, and G.S. Was, "Performance of Iron-Chromium-Aluminum Alloy Surface Coatings on Zircaloy-2 Under High-Temperature Steam and Normal BWR Operating Conditions", J. Nucl. Mater., 470, 327-338 (2016).  https://doi.org/10.1016/j.jnucmat.2015.11.037
  106. X. Han, Y. Wang, S. Peng, and H. Zhang, "Oxidation Behavior of FeCrAl Coated Zry-4 Under High Temperature Steam Environment", Corros. Sci., 149, 45-53 (2019).  https://doi.org/10.1016/j.corsci.2019.01.004
  107. X. Wang, K. Wei, H. Guan, C. Xu, W. Xue, Y. Zhang, and R. Wang, "High Temperature Oxidation of Zr-Nb Alloy With Plasma Electrolytic Oxidation Coating in 900-1200℃ Steam Environment", Surf. Coat. Technol., 407, 126768 (2021). 
  108. J. Krejci, J. Kabatova, F. Manoch, J. Koci, L. Cvrcek, J. Malek, S. Krum, P. Sutta, P. Bublikova, P. Halodova, H.K. Namburi, and M. Sevecek, "Development and Testing of Multicomponent Fuel Cladding With Enhanced Accidental Performance", Nucl. Eng. Technol., 52(3), 597-609 (2020).  https://doi.org/10.1016/j.net.2019.08.015
  109. C.R.F. Azevedo, "Selection of Fuel Cladding Material for Nuclear Fission Reactors", Eng. Fail. Anal., 18(8), 1943-1962 (2011).  https://doi.org/10.1016/j.engfailanal.2011.06.010
  110. D.A. Powers and R.O. Meyer. Cladding Swelling and Rupture Models for LOCA Analysis, U.S. Nuclear Regulatory Commission Technical Report, Nureg0630 (1980). 
  111. J.C.Brachet, S. Urvoy, E. Rouesne, G. Nony, M. Dumerval, M. Le Saux, F. Ott, A. Michau, F. Schuster, and F. Maury, "DLI-MOCVD CrxCy Coating to Prevent Zr-based Cladding From Inner Oxidation and Secondary Hydriding Upon LOCA Conditions", J. Nucl. Mater., 550, 152953 (2021). 
  112. A. Michau, F. Maury, F. Schuster, F. Lomello, R. Boichot, M. Pons, J.C. Brachet, and E. Monsifrot, "Inner-Side Coatings for Advanced Fuel Claddings Processed by DLI-MOCVD", Proc. of the 2017 Water Reactors Fuel Performance Meeting, September 10-14, 2017, Jeju Island, Korea. 
  113. F. Addou, A. Michau, H. Maskrot, Y. Gazal, F. Maury, T. Duguet, E. Monsifort, and F. Schuster, "Two-sided Protection for Zirconium-based Nuclear Fuel Cladding", Proc. of International Nuclear Fuel Cycle Conference TOP FUEL 2019, 115-121, September 22-27, Seattle, USA. 
  114. A. Michau, F. Maury, F. Schuster, R. Boichot, and M. Pons, "Evidence for a Cr Metastable Phase as a Tracer in DLI-MOCVD Chromium Hard Coatings Usable in High Temperature Environment", Appl. Surf. Sci., 422, 198-206 (2017).  https://doi.org/10.1016/j.apsusc.2017.05.253
  115. A. Michau, F. Maury, F. Schuster, R. Boichot, M. Pons, and E. Monsifrot, "Chromium Carbide Growth at Low Temperature by a Highly Efficient DLIMOCVD Process in Effluent Recycling Mode", Surf. Coat. Technol., 332, 96-104 (2017).  https://doi.org/10.1016/j.surfcoat.2017.06.077
  116. A. Michau, F. Maury, F. Schuster, F. Lomello, J.C. Brachet, E. Rouesne, M. Le Saux, R. Boichot, and M. Pons, "High-Temperature Oxidation Resistance of Chromium-based Coatings Deposited by DLIMOCVD for Enhanced Protection of the Inner Surface of Long Tubes", Surf. Coat. Technol., 349, 1048-1057 (2018).  https://doi.org/10.1016/j.surfcoat.2018.05.088
  117. A. Michau, F. Maury, F. Schhuster, I. Nuta, Y. Gazal, R. Boichot, and M. Pons, "Chromium Carbide Growth by Direct Liquid Injection Chemical Vapor Deposition in Long and Narrow Tubes, Experiments, Modeling and Simulation", Coatings, 8(6), 220 (2018). 
  118. U. S. Nuclear Regulatory Commission. "10CFR Part 50-Domestic Licensing of Production and Utilization Facilities." U.S. NRC. Accessed Aug. 7 2022. Avilable from: https://www.nrc.gov/reading-rm/doccollections/cfr/part050/full-text.html. 
  119. Nuclear Energy Agency, "Increased Accident Tolerance of Fuel for Light Water Reactors", Proc. of OECD/NEA Workshop on Accident Tolerant Fuels of LWRs, December 10-12, 2012, Issy-les-Moulineaux, France. 
  120. J. Ko, J.W. Kim, H.W. Min, Y. Kim, and Y.S. Yoon, "Review of Manufacturing Technologies for Coated Accident Tolerant Fuel Cladding", J. Nucl. Mater., 561, 153562 (2022). 
  121. H. Li, B. Jiang, and B. Yang, "Study on Crystalline to Amorphous Structure Transition of Cr Coatings by Magnetron Sputtering", Appl. Surf. Sci., 258(2), 935-939 (2011).  https://doi.org/10.1016/j.apsusc.2011.09.031
  122. J. Yang, M. Steinbruck, C. Tang, M. Grosse, J. Liu, J. Zhang, D. Yun, and S. Wang, "Review on Chromium Coated Zirconium Alloy Accident Tolerant Fuel Cladding", J. Alloys Compd., 895(Part 1), 162450 (2022). 
  123. C. Meng, L. Yang, Y. Wu, J. Tan, W. Dang, X. He, and X. Ma, "Study of the Oxidation Behavior of CrN Coating on Zr Alloy in Air", J. Nucl. Mater., 515, 354-369 (2019).  https://doi.org/10.1016/j.jnucmat.2019.01.006
  124. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.H. Park, B.K. Choi, and Y.H. Lee, "Out-of-Pile Performance of Surface-modified Zr Cladding for Accident Tolerant Fuel in LWRs", J. Nucl. Mater., 510, 93-99 (2018).  https://doi.org/10.1016/j.jnucmat.2018.07.061
  125. Y.H. Lee, J.H. Park, I.H. Kim, D.J. Park, Y.I. Jung, B.K. Choi, and H.G. Kim, "Enhanced Wear Resistance of CrAl-coated Claddings for Accident-Tolerant Fuel", J. Nucl. Mater., 523, 223-230 (2019).  https://doi.org/10.1016/j.jnucmat.2019.06.011
  126. X.F. Ma, Y.W. Wu, J. Tan, C.Y. Meng, L. Yang, W.A. Dang, and X.J. He, "Evaluation of Corrosion and Oxidation Behaviors of TiAlCrN Coatings for Nuclear Fuel Cladding", Surf. Coat. Technol., 358, 521-530 (2019).  https://doi.org/10.1016/j.surfcoat.2018.11.083
  127. A.S. Kuprin, V.A. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenki, V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, and P.N. Vyugov, "Vacuum-arc Chromium-based Coatings for Protection of Zirconium Alloys From the High-Temperature Oxidation in Air", J. Nucl. Mater., 465, 400-406 (2015).  https://doi.org/10.1016/j.jnucmat.2015.06.016
  128. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, and Y.H. Koo, "Adhesion Property and High-Temperature Oxidation Behavior of Cr-coated Zircaloy-4 Cladding Tube Prepared by 3D Laser Coating", J. Nucl. Mater., 465, 531-539 (2015).  https://doi.org/10.1016/j.jnucmat.2015.06.030
  129. X. Han, J. Xue, S. Peng, and H. Zhang, "An Interesting Oxidation Phenomenon of Cr Coatings on Zry4 Substrates in High Temperature Steam Environment", Corros. Sci., 156, 117-124 (2019).  https://doi.org/10.1016/j.corsci.2019.05.017
  130. V.A. Grudinin, G.A. Bleykher, D.V. Sidelev, V.P. Krivobokov, M. Bestetti, A. Vicenzo, and Silvia Franz, "Chromium Films Deposition by Hot Target High Power Pulsed Magnetron Sputtering: Deposition Conditions and Film Properties", Surf. Coat. Technol., 375, 352-362 (2019).  https://doi.org/10.1016/j.surfcoat.2019.07.025
  131. D.V. Sidelev, G.A. Bleykher, M. Bestetti, V.P. Krivobokov, A. Vicenzo, S. Franz, and M.F. Brunella, "A Comparative Study on the Properties of Chromium Coatings Deposited by Magnetron Sputtering With Hot and Cooled Target", Vacuum, 143, 479-485 (2017).  https://doi.org/10.1016/j.vacuum.2017.03.020
  132. T. Wei, R. Zhang, H. Yang, H. Liu, S. Qiu, Y. Wang, P. Du, K. He, X. Hu, and C. Dong, "Microstructure, Corrosion Resistance and Oxidation Behavior of Cr-coatings on Zircaloy-4 Prepared by Vacuum Arc Plasma Deposition", Corros. Sci., 158, 108077 (2019). 
  133. X. He, Z. Tian, B. Shi, X. Xu, C. Meng, W. Dang, J. Tan, and X. Ma, "Effect of Gas Pressure and Bias Potential on Oxidation Resistance of Cr Coatings", Ann. Nucl. Energy, 132, 243-248 (2019).  https://doi.org/10.1016/j.anucene.2019.04.038
  134. X. Hu, C. Dong, Q. Wang, B. Chen, H. Yang, T. Wei, R. Zhang, W. Gu, and D. Chen, "High-Temperature Oxidation of Thick Cr Coating Prepared by Arc Deposition for Accident Tolerant Fuel Claddings", J. Nucl. Mater., 519, 145-156 (2019).  https://doi.org/10.1016/j.jnucmat.2019.01.039
  135. Y. Wang, W. Zhou, Q. Wen, X. Ruan, F. Luo, G. Bai, Y. Qing, D. Zhu, Z. Huang, Y. Zhang, T. Liu, and R. Li, "Behavior of Plasma Sprayed Cr Coatings and FeCrAl Coatings on Zr Fuel Cladding Under Loss-of-Coolant Accident Conditions", Surf. Coat. Technol., 344, 141-148 (2018).  https://doi.org/10.1016/j.surfcoat.2018.03.016
  136. M. Sevecek, A. Gurgen, A. Seshadri, Y. Che, M. Wagih, B. Phillips, V. Champagne, and K. Shirvan, "Development of Cr Cold Spray-coated Fuel Cladding With Enhanced Accident Tolerance", Nucl. Eng. Technol., 50(2), 229-236 (2018).  https://doi.org/10.1016/j.net.2017.12.011
  137. H. Yeom, B. Maier, G. Johnson, T. Dabney, M. Lenling, and K. Sridharan, "High Temperature Oxidation and Microstructural Evolution of Cold Spray Chromium Coatings on Zircaloy-4 in Steam Environments", J. Nucl. Mater., 526, 151737 (2019). 
  138. B.R. Maier, H. Yeom, G. Johnson, T. Dabney, J. Hu, P. Baldo, M. Li, and K. Sridharan, "In Situ TEM Investigation of Irradiation-induced Defect Formation in Cold Spray Cr Coatings for Accident Tolerant Fuel Applications", J. Nucl. Mater., 512, 320-323 (2018).  https://doi.org/10.1016/j.jnucmat.2018.10.023
  139. H. Yeom, T. Dabney, G. Johnson, B. Maier, M. Lenling, and K. Sridharan, "Improving Deposition Efficiency in Cold Spraying Chromium Coatings by Powder Annealing", Int. J. Adv. Manuf. Technol., 100(5-8), 1373-1382 (2019).  https://doi.org/10.1007/s00170-018-2784-1
  140. A. Michau, Y. Gazalet, F. Addou, F. Maury, T. Duguet, R. Boichot, M. Pons, E. Monsifrot, H. Maskrot, and F. Schuster, "Scale up of a DLI-MOCVD Process for the Internal Treatment of a Batch of 16 Nuclear Fuel Cladding Segments With a CrCx Protective Coating", Surf. Coat. Technol., 375, 894-902 (2019).  https://doi.org/10.1016/j.surfcoat.2019.06.101
  141. J.C. Brachet, S. Urvoy, E. Rouesne, G. Nony, M. Dumerval, M. Le Saux, F. Ott, A. Michau, F. Schuster, and F. Maury, "DLI-MOCVD CrxCy Coating to Prevent Zr-based Cladding From Inner Oxidation and Secondary Hydriding Upon LOCA Conditions", J. Nucl. Mater., 550, 152953 (2021).