DOI QR코드

DOI QR Code

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Received : 2022.08.05
  • Accepted : 2022.11.04
  • Published : 2023.03.31

Abstract

Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (2021M2E1A1085196). This work was also supported by a grant from the Human Resources Development program (No. 20204010600250) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry, and Energy of the Korean Government.

References

  1. International Atomic Energy Agency, Underground Disposal of Radioactive Waste: Basic Guidance, IAEA Safety Series No. 54 (1981). 
  2. L. Moren. Design and Production of the KBS-3 Repository, Swedish Nuclear Fuel and Waste Management Co. Technical Report, SKB TR-10-12 (2010). 
  3. C.F. Tsang, F. Bernier, and C. Davies, "Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated And Plastic Clays-In the Context of Radioactive Waste Disposal", Int. J. Rock Mech. Min. Sci., 42(1), 109-125 (2005).  https://doi.org/10.1016/j.ijrmms.2004.08.003
  4. J. Lee, D. Cho, H. Choi, and J. Choi, "Concept of a Korean Reference Disposal System for Spent Fuels", J. Nucl. Sci. Technol., 44(12), 1565-1573 (2007).  https://doi.org/10.1080/18811248.2007.9711407
  5. I.Y. Kim, H.A. Kim, and H.J. Choi. Evaluation on Thermal Performance and Thermal Dimensioning of Direct Deep Geological Disposal System for High Burn-up Spent Nuclear Fuel, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-5230/2013 (2013). 
  6. J. Lee, I. Kim, H. Ju, H. Choi, and D. Cho, "Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea", J. Nucl. Fuel Cycle Waste Technol., 18(spc), 1-19 (2020).  https://doi.org/10.7733/jnfcwt.2020.18.S.1
  7. J.A. Hudson, O. Stephansson, and J. Andersson, "Guidance on Numerical Modelling of Thermo-Hydro-Mechanical Coupled Processes for Performance Assessment of Radioactive Waste Repositories", Int. J. Rock Mech. Min. Sci., 42(5-6), 850-870 (2005).  https://doi.org/10.1016/j.ijrmms.2005.03.018
  8. J.T. Birkholzer, C.F. Tsang, A.E. Bond, J.A. Hudson, L. Jing, and O. Stephansson, "25 Years of DECOVALEX-Scientific Advances and Lessons Learned From an International Research Collaboration in Coupled Subsurface Processes", Int. J. Rock Mech. Min. Sci., 122, 103995 (2019). 
  9. J. Rutqvist, D. Barr, R. Datta, A. Gens, A. Millard, S. Olivella, C.F. Tsang, and Y. Tsang, "Coupled Thermal-Hydrological-Mechanical Analyses of the Yucca Mountain Drift Scale Test-Comparison of Field Measurements to Predictions of Four Different Numerical Models", Int. J. Rock Mech. Min. Sci., 42(5-6), 680-697 (2005).  https://doi.org/10.1016/j.ijrmms.2005.03.008
  10. S.M. Hsiung, A.H. Chowdhury, and M.S. Nataraja, "Numerical Simulation of Thermal-Mechanical Processes Observed at the Drift-Scale Heater Test at Yucca Mountain, Nevada, USA", Int. J. Rock Mech. Min. Sci., 42(5-6), 652-666 (2005).  https://doi.org/10.1016/j.ijrmms.2005.03.006
  11. J. Rutqvist, B. Freifeld, K.B. Min, D. Elsworth, and Y. Tsang, "Analysis of Thermally Induced Changes in Fractured Rock Permeability During 8 Years of Heating and Cooling at the Yucca Mountain Drift Scale Test", Int. J. Rock Mech. Min. Sci., 45(8), 1373-1389 (2008).  https://doi.org/10.1016/j.ijrmms.2008.01.016
  12. E.E. Alonso, J. Alcoverro, F. Coste, L. Malinsky, V. Merrien-Soukatchoff, I. Kadiri, T. Nowak, H. Shao, T.S. Nguyen, A.P.S. Selvadurai, G. Armand, S.R. Sobolik, M. Itamura, C.M. Stone, S.W. Webb, A. Rejeb, M. Tijani, Z. Maouche, A. Kobayashi, H. Kurikami, A. Ito, Y. Sugita, M. Chijimatsu, L. Borgesson, J. Hernelind, J. Rutqvist, C.F. Tsang, and P. Jussila, "The FEBEX Benchmark Test: Case Definition and Comparison of Modelling Approaches", Int. J. Rock Mech. Min. Sci., 42(5-6), 611-638 (2005).  https://doi.org/10.1016/j.ijrmms.2005.03.004
  13. T.S. Nguyen, A.P.S. Selvadurai, and G. Armand, "Modelling the FEBEX THM Experiment Using a State Surface Approach", Int. J. Rock Mech. Min. Sci., 42(5-6), 639-651 (2005).  https://doi.org/10.1016/j.ijrmms.2005.03.005
  14. C. Lee, J. Lee, and G.Y. Kim, "Numerical Analysis of FEBEX at Grimsel Test Site in Switzerland", Tunn. Undergr. Space, 30(4), 359-381 (2020). 
  15. J. Lee, C. Lee, and G.Y. Kim. Development of TOUGH2-MP/FLAC3D Simulator for the Coupled Thermalhydraulic-Mechanical Analysis in Porous Media, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-6737/2016 (2016). 
  16. K.I. Kim, C. Lee, and J.S. Kim, "A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste", Tunn. Undergr. Space, 31(4), 221-242 (2021). 
  17. C. Lee, J. Lee, M. Kim, and G.Y. Kim, "Implementation of Barcelona Basic Model Into TOUGH2-MP/FLAC3D", Tunn. Undergr. Space, 30(1), 39-62 (2020). 
  18. K.I. Kim, C. Lee, J.S. Kim, and D. Cho, "A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer", Tunn. Undergr. Space, 31(4), 289-308 (2021). 
  19. C. Lee, J. Lee, S. Park, S. Kwon, W.J. Cho, and G.Y. Kim, "Numerical Analysis of Coupled Thermo-Hydro-Mechanical Behavior in Single- and Multi-Layer Repository Concepts for High-Level Radioactive Waste Disposal", Tunn. Undergr. Space Technol., 103, 103452 (2020).  https://doi.org/10.1016/j.tust.2020.103452
  20. M. Chijimatsu, T. Fujita, Y. Sugita, K. Amemiya, and A. Kobayashi, "Field Experiment, Results and THM Behavior in the Kamaishi Mine Experiment", Int. J. Rock Mech. Min. Sci., 38(1), 67-78 (2001).  https://doi.org/10.1016/S1365-1609(00)00065-4
  21. J. Rutqvist, L. BOrgesson, M. Chijimatsu, T.S. Nguyen, L. Jing, J. Noorishad, and C.F. Tsang, "Coupled Thermo-Hydro-Mechanical Analysis of a Heater Test in Fractured Rock and Bentonite at Kamaishi Mine-Comparison of Field Results to Predictions of Four Finite Element Codes", Int. J. Rock Mech. Min. Sci., 38(1), 129-142 (2001).  https://doi.org/10.1016/S1365-1609(00)00069-1
  22. M. Chijimatsu, T.S. Nguyen, L. Jing, J. De Jonge, M. Kohlmeier, A. Millard, A. Rejeb, J. Rutqvist, M. Souley, and Y. Sugita, "Numerical Study of the THM Effects on the Near-Field Safety of a Hypothetical Nuclear Waste Repository-BMT1 of the DECOVALEX III Project. Part 1: Conceptualization and Characterization of the Problems and Summary of Results", Int. J. Rock Mech. Min. Sci., 42(5-6), 720-730 (2005).  https://doi.org/10.1016/j.ijrmms.2005.03.010
  23. J. Rutqvist, Y.S. Wu, C.F. Tsang, and G. Bodvarsson, "A Modeling Approach for Analysis of Coupled Multiphase Fluid Flow, Heat Transfer, and Deformation in Fractured Porous Rock", Int. J. Rock Mech. Min. Sci., 39(4), 429-442 (2002).  https://doi.org/10.1016/S1365-1609(02)00022-9
  24. K. Pruess, C. Oldenburg, and G. Moridis, TOUGH2 User's Guide Version 2, Lawrence Berkeley National Laboratory, LBNL-43134 (1999). 
  25. Itasca Consulting Group, Inc., Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D), Version 4.0, Minnesota (2009). 
  26. H.M. Kim, J. Rutqvist, D.W. Ryu, B.H. Choi, C. Sunwoo, and W.K. Song, "Exploring the Concept of Compressed Air Energy Storage (CAES) in Lined Rock Caverns at Shallow Depth: A Modeling Study of Air Tightness and Energy Balance", Appl. Energy, 92, 653-667 (2012).  https://doi.org/10.1016/j.apenergy.2011.07.013
  27. P. Jeanne, J. Rutqvist, P.F. Dobson, M. Walters, C. Hartline, and J. Garcia, "The Impacts of Mechanical Stress Transfers Caused by Hydromechanical and Thermal Processes on Fault Stability During Hydraulic Stimulation in a Deep Geothermal Reservoir", Int. J. Rock Mech. Min. Sci., 72, 149-163 (2014).  https://doi.org/10.1016/j.ijrmms.2014.09.005
  28. J. Rutqvist, A.P. Rinaldi, F. Cappa, and G.J. Moridis, "Modeling of Fault Activation and Seismicity by Injection Directly Into a Fault Zone Associated With Hydraulic Fracturing of Shale-Gas Reservoirs", J. Pet. Sci. Eng., 127, 377-386 (2015).  https://doi.org/10.1016/j.petrol.2015.01.019
  29. V. Vilarrasa, A.P. Rinaldi, and J. Rutqvist, "Long-Term Thermal Effects on Injectivity Evolution During CO2 Storage", Int. J. Greenh. Gas Control, 64, 314-322 (2017).  https://doi.org/10.1016/j.ijggc.2017.07.019
  30. J. Rutqvist and C.F. Tsang, "Analysis of Thermal-Hydrologic-Mechanical Behavior Near an Emplacement Drift at Yucca Mountain", J. Contam. Hydrol., 62-63, 637-652 (2003).  https://doi.org/10.1016/S0169-7722(02)00184-5
  31. J. Rutqvist, Y. Ijiri, and H. Yamamoto, "Implementation of the Barcelona Basic Model Into TOUGH-FLAC for Simulations of the Geomechanical Behavior of Unsaturated Soils", Comput. Geosci., 37(6), 751-762 (2011).  https://doi.org/10.1016/j.cageo.2010.10.011
  32. D. Zbinden, A.P. Rinaldi, L. Urpi, and S. Wiemer, "On the Physics-based Processes Behind Production-induced Seismicity in Natural Gas Fields", J. Geophys. Res. Solid Earth, 122(5), 3792-3812 (2017).  https://doi.org/10.1002/2017JB014003
  33. M.A. Grant, "Permeability Reduction Factors at Wairakei", Presented at AICHE-ASME Heat Transfer Conference, Paper 77-HT-52, Salt Lake City, Utah (1977). 
  34. L.J. Klinkenberg, "The Permeability of Porous Media to Liquids and Gases", American Petroleum Institute Drilling and Production Practice, API-41, 200-213 (1941). 
  35. M.T. van Genuchten, "A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils", Soil Sci. Soc. Am. J., 44(5), 892-898 (1980).  https://doi.org/10.2136/sssaj1980.03615995004400050002x
  36. N.B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases: In Normal and Dissociated States, Hemisphere Pub. Corp., London (1975). 
  37. W.R. Walker, J.D. Sabey, and D.R. Hampton. Studies of Heat Transfer and Water Migration in Soils. Final Report, U.S. Department of Energy Report, DOE/CS/30139-T1 (1981). 
  38. C. Lee, J.W. Park, C. Park, and E.S. Park, "Current Status of Research on Thermal and Mechanical Properties of Rock Under High-Temperature Condition", Tunn. Undergr. Space, 25(1), 1-23 (2015).  https://doi.org/10.7474/TUS.2015.25.1.001
  39. J. Rutqvist, J. Noorishad, and C.F. Tsang. Coupled thermohydromechanical Analysis of a Heater Test in Unsaturated Clay and Fractured Rock at Kamaishi Mine, Ernest Orlando Lawrence Berkeley National Laboratory Report, LBNL-44203 (1999). 
  40. T. von Berlepsch and B. Haverkamp, "Salt as a Host Rock for the Geological Repository for Nuclear Waste", Elements, 12(4), 257-262 (2016).  https://doi.org/10.2113/gselements.12.4.257
  41. C. Steefel, J. Rutqvist, C.F. Tsang, H.H. Liu, E. Sonnenthal, J. Houseworth, and J. Birkholzer. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS), Ernest Orlando Lawrence Berkeley National Laboratory Report, LBNL-3901E (2010). 
  42. T. Fujita, M. Chijimatsu, Y. Sugita, K. Amemiya, and Y. Moro, "Field Experiment of T-H-M Process in the Near Field", Proc. of Int. Workshop for the Kamaishi in Situ Experiments, JNC-TN-7400-99-007, 87-94, August 24-25, 1998, Kamaishi.