과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2021M2D2A1A02048838).
참고문헌
- F. King, C. Lilja, and M. Vahanen, "Progress in the Understanding of the Long-term Corrosion Behaviour of Copper Canisters", J. Nucl. Mater., 438(1-3), 228-237 (2013). https://doi.org/10.1016/j.jnucmat.2013.02.080
- W.H. Bowyer. The Effects of Impurities on the Properties of OFP Copper Specified for the Copper Iron Canister, Swedish Nuclear Power Inspectorate Report, SKI Report 99:44 (1999).
- R. Sandstrom and H.C.M. Andersson, "The Effect of Phosphorus on Creep in Copper", J. Nucl. Mater., 372(1), 66-75 (2008). https://doi.org/10.1016/j.jnucmat.2007.02.004
- H. Magnusson, F. Lindberg, and K. Frisk. Validating Thermodynamic Description of Copper Oxides and Phosphates by Controlled Oxidation of OFP-copper, Swedish Nuclear Fuel and Waste Management Report, SKB R-15-06 (2015).
- D.S. Hall and P.G. Keech, "An Overview of the Canadian Corrosion Program for the Long-term Management of Nuclear Waste", Corros. Eng. Sci. Technol., 52(sup1), 2-5 (2017). https://doi.org/10.1080/1478422X.2016.1275419
- C.H. Boyle and S.A. Meguid, "Mechanical Performance of Integrally Bonded Copper Coatings for the Long Term Disposal of Used Nuclear Fuel", Nucl. Eng. Des., 293, 403-412 (2015). https://doi.org/10.1016/j.nucengdes.2015.08.011
- H.J. Choi, M. Lee, and J.Y. Lee, "Application of a Cold Spray Technique to the Fabrication of a Copper Canister for the Geological Disposal of CANDU Spent Fuels", Nucl. Eng. Des., 240(10), 2714-2720 (2010). https://doi.org/10.1016/j.nucengdes.2010.06.038
- H.J. Choi, J.Y. Lee, and J. Choi, "Development of Geological Disposal Systems for Spent Fuels and High-level Radioactive Wastes in Korea", Nucl. Eng. Technol., 45(1), 29-40 (2013). https://doi.org/10.5516/NET.06.2012.006
- Swedish Nuclear Fuel and Waste Management. Supplementary Information on Canister Integrity Issues, SKB Technical Report, TR-19-15 (2019).
- F. King, M. Kolar, M. Vahanen, and C. Lilja, "Modelling Long Term Corrosion Behaviour of Copper Canisters in KBS-3 Repository", Corros. Eng. Sci. Technol., 46(2), 217-222 (2011). https://doi.org/10.1179/18211Y.0000000004
- E. Arilahti, T. Lehtikuusi, M. Olin, T. Saario, and P. Varis, "Evidence for Internal Diffusion of Sulphide From Groundwater Into Grain Boundaries Ahead of Crack Tip in Cu OFP Copper", Corros. Eng. Sci. Technol., 46(2), 134-137 (2011). https://doi.org/10.1179/1743278210Y.0000000009
- N. Taniguchi and M. Kawasaki, "Influence of Sulfide Concentration on the Corrosion Behavior of Pure Copper in Synthetic Seawater", J. Nucl. Mater., 379(1-3), 154-161 (2008). https://doi.org/10.1016/j.jnucmat.2008.06.010
- T. Meiners, Z. Peng, B. Gault, C.H. Liebscher, and G. Dehm, "Sulfur-induced Embrittlement in High-purity, Polycrystalline Copper", Acta Mater., 156, 64-75 (2018). https://doi.org/10.1016/j.actamat.2018.06.013
- P.A. Korzhavyi, I.A. Abrikosov, and B. Johansson, "Theoretical Investigation of Sulfur Solubility in Pure Copper and Dilute Copper-based Alloys", Acta Mater., 47(5), 1417-1424 (1999). https://doi.org/10.1016/S1359-6454(99)00036-1
- G. Neumann and C. Tuijn, Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, 1st ed., 45-53, Pergamon Press, London (2009).
- Y. Wang, H. Gao, Y. Han, Y. Dai, F. Bian, J. Wang, and B. Sun, "First-principles Study of Solute-vacancy Binding in Cu", J. Alloys Compd., 608, 334-337 (2014). https://doi.org/10.1016/j.jallcom.2014.04.053
- S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Ruhl, and C. Wolverton, "The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies", npj Comput. Mater., 1, 15010 (2015).
- M. Wagih, P.M. Larsen, and C.A. Schuh, "Learning Grain Boundary Segregation Energy Spectra in Polycrystals", Nat. Commun., 11, 6376 (2020).