DOI QR코드

DOI QR Code

Design of Copper Alloys Preventing Grain Boundary Precipitation of Copper Sulfide Particles for a Copper Disposal Canister

  • Received : 2022.09.28
  • Accepted : 2022.11.01
  • Published : 2023.03.31

Abstract

The major concern in the deep geological disposal of spent nuclear fuels include sulfide-induced corrosion and stress corrosion cracking of copper canisters. Sulfur diffusion into copper canisters may induce copper embrittlement by causing Cu2S particle formation along grain boundaries; these sulfide particles can act as crack initiation sites and eventually cause embrittlement. To prevent the formation of Cu2S along grain boundaries and sulfur-induced copper embrittlement, copper alloys are designed in this study. Alloying elements that can act as chemical anchors to suppress sulfur diffusion and the formation of Cu2S along grain boundaries are investigated based on the understanding of the microscopic mechanism of sulfur diffusion and Cu2S precipitation along grain boundaries. Copper alloy ingots are experimentally manufactured to validate the alloying elements. Microstructural analysis using scanning electron microscopy with energy dispersive spectroscopy demonstrates that Cu2S particles are not formed at grain boundaries but randomly distributed within grains in all the vacuum arc-melted Cu alloys (Cu-Si, Cu-Ag, and Cu-Zr). Further studies will be conducted to evaluate the mechanical and corrosion properties of the developed Cu alloys.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2021M2D2A1A02048838).

References

  1. F. King, C. Lilja, and M. Vahanen, "Progress in the Understanding of the Long-term Corrosion Behaviour of Copper Canisters", J. Nucl. Mater., 438(1-3), 228-237 (2013).  https://doi.org/10.1016/j.jnucmat.2013.02.080
  2. W.H. Bowyer. The Effects of Impurities on the Properties of OFP Copper Specified for the Copper Iron Canister, Swedish Nuclear Power Inspectorate Report, SKI Report 99:44 (1999). 
  3. R. Sandstrom and H.C.M. Andersson, "The Effect of Phosphorus on Creep in Copper", J. Nucl. Mater., 372(1), 66-75 (2008).  https://doi.org/10.1016/j.jnucmat.2007.02.004
  4. H. Magnusson, F. Lindberg, and K. Frisk. Validating Thermodynamic Description of Copper Oxides and Phosphates by Controlled Oxidation of OFP-copper, Swedish Nuclear Fuel and Waste Management Report, SKB R-15-06 (2015). 
  5. D.S. Hall and P.G. Keech, "An Overview of the Canadian Corrosion Program for the Long-term Management of Nuclear Waste", Corros. Eng. Sci. Technol., 52(sup1), 2-5 (2017).  https://doi.org/10.1080/1478422X.2016.1275419
  6. C.H. Boyle and S.A. Meguid, "Mechanical Performance of Integrally Bonded Copper Coatings for the Long Term Disposal of Used Nuclear Fuel", Nucl. Eng. Des., 293, 403-412 (2015).  https://doi.org/10.1016/j.nucengdes.2015.08.011
  7. H.J. Choi, M. Lee, and J.Y. Lee, "Application of a Cold Spray Technique to the Fabrication of a Copper Canister for the Geological Disposal of CANDU Spent Fuels", Nucl. Eng. Des., 240(10), 2714-2720 (2010).  https://doi.org/10.1016/j.nucengdes.2010.06.038
  8. H.J. Choi, J.Y. Lee, and J. Choi, "Development of Geological Disposal Systems for Spent Fuels and High-level Radioactive Wastes in Korea", Nucl. Eng. Technol., 45(1), 29-40 (2013).  https://doi.org/10.5516/NET.06.2012.006
  9. Swedish Nuclear Fuel and Waste Management. Supplementary Information on Canister Integrity Issues, SKB Technical Report, TR-19-15 (2019). 
  10. F. King, M. Kolar, M. Vahanen, and C. Lilja, "Modelling Long Term Corrosion Behaviour of Copper Canisters in KBS-3 Repository", Corros. Eng. Sci. Technol., 46(2), 217-222 (2011).  https://doi.org/10.1179/18211Y.0000000004
  11. E. Arilahti, T. Lehtikuusi, M. Olin, T. Saario, and P. Varis, "Evidence for Internal Diffusion of Sulphide From Groundwater Into Grain Boundaries Ahead of Crack Tip in Cu OFP Copper", Corros. Eng. Sci. Technol., 46(2), 134-137 (2011).  https://doi.org/10.1179/1743278210Y.0000000009
  12. N. Taniguchi and M. Kawasaki, "Influence of Sulfide Concentration on the Corrosion Behavior of Pure Copper in Synthetic Seawater", J. Nucl. Mater., 379(1-3), 154-161 (2008).  https://doi.org/10.1016/j.jnucmat.2008.06.010
  13. T. Meiners, Z. Peng, B. Gault, C.H. Liebscher, and G. Dehm, "Sulfur-induced Embrittlement in High-purity, Polycrystalline Copper", Acta Mater., 156, 64-75 (2018).  https://doi.org/10.1016/j.actamat.2018.06.013
  14. P.A. Korzhavyi, I.A. Abrikosov, and B. Johansson, "Theoretical Investigation of Sulfur Solubility in Pure Copper and Dilute Copper-based Alloys", Acta Mater., 47(5), 1417-1424 (1999).  https://doi.org/10.1016/S1359-6454(99)00036-1
  15. G. Neumann and C. Tuijn, Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, 1st ed., 45-53, Pergamon Press, London (2009). 
  16. Y. Wang, H. Gao, Y. Han, Y. Dai, F. Bian, J. Wang, and B. Sun, "First-principles Study of Solute-vacancy Binding in Cu", J. Alloys Compd., 608, 334-337 (2014).  https://doi.org/10.1016/j.jallcom.2014.04.053
  17. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Ruhl, and C. Wolverton, "The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies", npj Comput. Mater., 1, 15010 (2015). 
  18. M. Wagih, P.M. Larsen, and C.A. Schuh, "Learning Grain Boundary Segregation Energy Spectra in Polycrystals", Nat. Commun., 11, 6376 (2020).