References
- Ammad-Ud-Din, M., Ivannikova, E., Khan, S. A., Oyomno, W., Fu, Q., Tan, K. E., & Flanagan, A. (2019). Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint arXiv:1901.09888.
- Chen, Y., Ning, Y., Slawski, M., & Rangwala, H. (2020). Asynchronous Online Federated Learning for Edge Devices with Non-IID Data. In International Conference on Big Data. https://doi.org/10.1109/bigdata50022.2020.9378161.
- Chen, Y., Sun, X., & Jin, Y. (2020). Communication-Efficient Federated Deep Learning With Layerwise Asynchronous Model Update and Temporally Weighted Aggregation. IEEE Transactions on Neural Networks and Learning Systems, 31(10), 4229-4238. https://doi.org/10.1109/tnnls.2019.2953131.
- Chen, Z., Liao, W., Hua, K., Lu, C., & Yu, W. (2021). Towards asynchronous federated learning for heterogeneous edge-powered internet of things. Digital Communications and Networks, 7(3), 317-326. https://doi.org/10.1016/j.dcan.2021.04.001.
- Cohen, G., Afshar, S., Tapson, J., & Van Schaik, A. (2017, May). EMNIST: Extending MNIST to handwritten letters. In 2017 international joint conference on neural networks (IJCNN) (pp. 2921-2926). IEEE.
- Dutta, S., Joshi, G., Ghosh, S., Dube, P., & Nagpurkar, P. (2018). Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD. In International Conference on Artificial Intelligence and Statistics (pp. 803-812). http://proceedings.mlr.press/v84/dutta18a/dutta18a.pdf.
- Hao, J., Zhao, Y., & Zhang, J. (2020). Time Efficient Federated Learning with Semi-asynchronous Communication. In International Conference on Parallel and Distributed Systems. https://doi.org/10.1109/icpads51040.2020.00030.
- Hu, C., Chen, Z., & Larsson, E. G. (2021). Device Scheduling and Update Aggregation Policies for Asynchronous Federated Learning. In International Workshop on Signal Processing Advances in Wireless Communications. https://doi.org/10.1109/spawc51858.2021.9593194.
- Konecny, J., McMahan, H. B., Yu, F. X., Richtarik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.
- Lucas, J. M., & Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics, 32(1), 1-12. https://doi.org/10.1080/00401706.1990.10484583.
- McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. a. Y. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data. In International Conference on Artificial Intelligence and Statistics (pp. 1273-1282). http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf.
- Shi, G., Li, L., Wang, J., Chen, W., Ye, K., & Xu, C. (2020). HySync: Hybrid Federated Learning with Effective Synchronization. In High Performance Computing and Communications. https://doi.org/10.1109/hpcc-smartcity-dss50907.2020.00080.
- Tandon, R., Lei, Q., Dimakis, A. G., & Karampatziakis, N. (2017, July). Gradient coding: Avoiding stragglers in distributed learning. In International Conference on Machine Learning (pp. 3368-3376). PMLR.
- Wang, Z., Zhang, Z., Tian, Y., Yang, Q., Shan, H., Wang, W., & Quek, T. Q. (2022). Asynchronous federated learning over wireless communication networks. IEEE Transactions on Wireless Communications, 21(9), 6961-6978. https://doi.org/10.1109/TWC.2022.3153495
- Wu, X., & Wang, C. L. (2022, July). KAFL: Achieving High Training Efficiency for Fast-K Asynchronous Federated Learning. In 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS) (pp. 873-883). IEEE.
- Xie, C., Koyejo, S., & Gupta, I. (2019). Asynchronous federated optimization. arXiv preprint arXiv:1903.03934.
- Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated Machine Learning. ACM Transactions on Intelligent Systems and Technology, 10(2), 1-19. https://doi.org/10.1145/3298981.
- Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma, Z. M., & Liu, T. Y. (2017, July). Asynchronous stochastic gradient descent with delay compensation. In International Conference on Machine Learning (pp. 4120-4129). PMLR.
- Zhou, Z., Li, Y., Ren, X., & Yang, S. (2022). Towards Efficient and Stable K-Asynchronous Federated Learning with Unbounded Stale Gradients on Non-IID Data. IEEE Transactions on Parallel and Distributed Systems, 33(12), 3291-3305. https://doi.org/10.1109/tpds.2022.3150579.