DOI QR코드

DOI QR Code

A Study on the Industrial Application of PTFE Fibrous Nonwoven Fabricated by Electrospinning Technique as Dust Filtration Media

전기방사 기법으로 제조된 PTFE 섬유기반 부직포의 산업용 방진필터 응용에 관한 연구

  • Ji Hyun Lee (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Kwang Won Kim (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Seon-Jin Choi (Division of Materials Science and Engineering, Hanyang University) ;
  • Ki Ro Yoon (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
  • 이지현 (한국생산기술연구원 섬유연구부문) ;
  • 김광원 (한국생산기술연구원 섬유연구부문) ;
  • 최선진 (한양대학교 신소재공학과) ;
  • 윤기로 (한국생산기술연구원 섬유연구부문)
  • Received : 2023.05.23
  • Accepted : 2023.08.16
  • Published : 2023.08.31

Abstract

With the advancement of industrial development and diversification of workplaces development, the development of filtration technologies for capturing fine dusts and preventing facilities in workplaces that require specific management of various emissions, such as high temperature, high humidity, and acidic/alkaline conditions, has gained a large interest. Among several polymeric filtration materials, polytetrafluoroethylene (PTFE), commonly known as Teflon, is recognized for its excellent thermal stability, chemical resistance, and low coefficient of friction. However, these properties of PTFE pose challenges in conventional melt-blowing or electrospinning techniques and production processes for filtration materials. In this study, we successfully performed electrospinning by emulsifying granular PTFE powder into a heterogeneous polymeric solution and fabricated a nonwoven fabric composed solely of PTFE fibers through subsequent heat treatment. The developed PTFE nonwoven fabric consisted of fibers with a diameter of about 1.2 ㎛ and achieved superior heat stability, water resistance, chemical resistance, and tensile properties compared to conventional filtration materials. Moreover, it demonstrated excellent filtration efficiency with a pressure drop of 94.04% and 89.84 Pa, respectively, and confirmed its potential as an industrial filter that can be utilized in extremely harsh environments.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 STEAM연구사업BRIDGE 융합연구개발(과제번호 2022M3C1C3095083) 및 한국생산기술연구원 기본사업 '섬유기반 공기내 유해인자 저감기술 개발'(과제번호 EO-23-0005)의 지원을 받아 수행된 연구임.

References

  1. "Investigation of Emission Sources in Medium/Small-scale (4,5 types) Air Emission Workplaces", National Institute of Environmental Research, 2019.
  2. "Management of Volatile Organic Compound Emission Facilities", Ministry of Environment, 2020.
  3. K. Curran, M. Underhill, J. Grau-Bove, T. Fearn, L. T. Gibson, and M. Strlic, "Classifying Degraded Modern Polymeric Museum Artefacts by Their Smell", Angew. Chem. Int. Ed., 2018, 57, 7336-7340. https://doi.org/10.1002/anie.201712278
  4. C. D. Natale, R. Paolesse, E. Martinelli, and R. Capuano, "Solid-State Gas Sensors for Breath Analysis: A Review", Anal. Chim. Acta, 2014, 824, 1-17. https://doi.org/10.1016/j.aca.2014.03.014
  5. L. Lucattini, G. Poma, A. Covaci, J. de Boer, M. H. Lamoree, and P. E. G. Leonards, "A Review of Semi-Vlatile Organic Compounds (SVOCs) in the Indoor Environment: Occurrence in Consumer Products, Indoor Air and Dust", Chemosphere, 2018, 201, 466-482. https://doi.org/10.1016/j.chemosphere.2018.02.161
  6. J. H. Lee, H. J. Oh, Y. K. Park, Y. Kim, G. Lee, S. J. Doh, W. Lee, S.-J. Choi, and K. R. Yoon, "Multi-Scale Nanofiber Membrane Functionalized with Metal-Organic Frameworks for Efficient Filtration of Both PM2.5 and CH3CHO with Colorimetric NH3 Detection", Chem. Eng. J., 2023, 464, 142725.
  7. "3rd Comprehensive Plan for Air Quality Improvement", Ministry of Environment, 2022.
  8. Z. Zhang, Z. Jiang, and W. Shangguan, "Low-Temperature Catalysis for VOCs Removal in Technology and Application: A State-of-the-Art Review", Catal. Today, 2016, 264, 270-278. https://doi.org/10.1016/j.cattod.2015.10.040
  9. A. G. Olabi, T. Wilberforce, K. Elsaid, E. T. Sayed, H. M. Maghrabie, and M. A. Abdelkareem, "Large Scale Application of Carbon Capture to Process Industries - A Review", J. Clean. Prod., 2022, 362, 132300.
  10. M. Zhang, W. Qin, X. Ma, A. Liu, C. Yan, P. Li, M. Huang, and C. He, "An Environmentally Friendly Technology of Metal Fiber Bag Filter to Purify Dust-Laden Airflow", Atmosphere, 2022, 13, 485.
  11. Y. Zhang, K. Xu, J. Ge, and B. Liu, "Study on Hydrogen Evolution Risk and Suppression Methods of Mg-Al/Mg-Zn Alloy Waste Dust in Wet Dust Collector", Process Saf. Environ. Prot., 2022, 163, 321-329. https://doi.org/10.1016/j.psep.2022.04.040
  12. M. T. Kanojiya, N. Mandavgade, V. Kalbande, and C. Padole, "Design and Fabrication of Cyclone Dust Collector for Industrial Application", Mater. Today: Proceedings, 2022, 49, 378-382. https://doi.org/10.1016/j.matpr.2021.02.254
  13. Z. Yuan, Z. Chen, X. Wu, N. Zhang, L. Bian, Y. Qiao, J. Li, and Z. Li, "An Innovative Low-NOx Combustion Technology for Industrial Pulverized Coal Boiler: Gas-Particle Flow Characteristics with Different Radial-Air-Staged Levels", Energy, 2022, 260, 125142.
  14. Z. Niu, S. Kong, H. Zheng, Q. Yan, J. Liu, Y. Feng, J. Wu, S. Zheng, X. Zeng, L. Yao, Y. Zhang, Z. Fan, Y. Cheng, X. Liu, F. Wu, S. Qin, Y. Yan, F. Ding, W. Liu, K. Zhu, D. Liu, and S. Qi, "Temperature Dependence of Source Profiles for Volatile Organic Compounds from Typical Volatile Emission Sources", Sci. Total Environ., 2021, 751, 141741.
  15. H. Lee, K. Kim, Y. Choi, and D. Kim, "Emissions of Volatile Organic Compounds (VOCs) from an Open-Circuit Dry Cleaning Machine Using a Petroleum-Based Organic Solvent: Implications for Impacts on Air Quality", Atmosphere, 2021, 12, 637.
  16. Y. Wang, Y. Xu, D. Wang, Y. Zhang, X. Zhang, J. Liu, Y. Zhao, C. Huang, and X. Jin, "Polytetrafluoroethylene/Polyphenylene Sulfide Needle-Punched Triboelectric Air Filter for Efficient Particulate Matter Removal", ACS Appl. Mater. Interfaces, 2019, 11, 48437-48449. https://doi.org/10.1021/acsami.9b18341
  17. E. Dhanumalayan and G. M. Joshi, "Performance properties and applications of polytetrafluoroethylene (PTFE)-a review", Adv. Compos. Hybrid Mater., 2018, 1, 247-268. https://doi.org/10.1007/s42114-018-0023-8
  18. P. Zhao, N. Soin, K. Prashanthi, J. Chen, S. Dong, E. Zhou, Z. Zhu, A. A. Narasimulu, C. D. Montemagno, L. Yu, and J. Luo, "Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators", ACS Appl. Mater. Interfaces, 2018, 10, 5880-5891. https://doi.org/10.1021/acsami.7b18442
  19. Y. Cho, Y. Son, J. Ahn, H. Lim, S. Ahn, J. Lee, P. K. Bae, and I.-D. Kim, "Multifunctional Filter Membranes Based on Self-Assembled Core-Shell Biodegradable Nanofibers for Persistent Electrostatic Filtration through the Triboelectric Effect", ACS Nano, 2022, 16, 19451-19463. https://doi.org/10.1021/acsnano.2c09165
  20. J. Xue, T. Wu, Y. Dai, and Y. Xia, "Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications", Chem. Rev., 2019, 119, 5298-5415. https://doi.org/10.1021/acs.chemrev.8b00593
  21. S. J. Son, S. K. Hong, and G. Lim, "Emulsion Electrospinning of Hydrophobic PTFE-PEO Composite Nanofibrous Membranes for -Simple Oil/Water Separation", J. Sens. Sci. Technol., 2020, 29, 89-92. https://doi.org/10.5369/JSST.2020.29.2.89
  22. C.-K. Hwang, K. A. Lee, J. Lee, Y. Kim, H. Ahn, W. Hwang, B.-K. Ju, J. Y. Kim, S. Y. Yeo, J. Choi, Y.-E. Sung, I.-D. Kim, and K. R. Yoon, "Perpendicularly Stacked Array of PTFE Nanofibers as a Reinforcement for Highly Durable Composite Membrane in Proton Exchange Membrane Fuel Cells", Nano Energy, 2022, 101, 107581.
  23. X. Zhang, Y. Zheng, D. Wang, Z. U. Rahman, and F. Zhou, "Liquid-Solid Contact Triboelectrification and Its Use in Self-Powered Nanosensor for Detecting Organics in Water", Nano Energy, 2016, 30, 321-329. https://doi.org/10.1016/j.nanoen.2016.10.025
  24. S. Huan, G. Liu, G. Han, W. Cheng, Z. Fu, Q. Wu, and Q. Wang, "Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers", Materials, 2015, 8, 2718-2734. https://doi.org/10.3390/ma8052718
  25. J. S. Boke, J. Popp, and C. Krafft, "Optical Photothermal Infrared Spectroscopy with Simultaneously Acquired Raman Spectroscopy for Two-dimensional Microplastic Identification", Sci. Rep., 2022, 12, 18785.
  26. P. Peets, K. Kaupmees, S. Vahur, and I. Leito, "Reflectance FT-IR Spectroscopy as a Viable Option for Textile Fiber Identification", Herit. Sci., 2019, 7, 1-10. https://doi.org/10.1186/s40494-018-0244-8