DOI QR코드

DOI QR Code

상분리 방식을 이용한 비수용성 PVA 멤브레인 제조

Non-Aqueous PVA Membrane Preparation Using Phase Separation Method

  • 이상훈 (한국섬유소재연구원) ;
  • 오상연 (한국섬유소재연구원) ;
  • 김의화 (신한대학교 섬유소재공학과)
  • Sang Hoon Lee (Korea High Tech Textile Research Institute) ;
  • Sang Youn Oh (Korea High Tech Textile Research Institute) ;
  • Eui Hwa Kim (Department of Textile Materials Engineering, Shinhan University)
  • 투고 : 2023.05.31
  • 심사 : 2023.08.08
  • 발행 : 2023.08.31

초록

In seawater desalination, water purification or energy recovery ventilators (ERVs), it is known that hydrophilic materials are more advantageous than hydrophobic materials to reduce pollution and improve moisture permeability when water or moisture passes through a membrane. Poly(vinyl alcohol) (PVA) is also known to have excellent mechanical properties, chemical resistance, and thermal stability as an inherently hydrophilic crystalline polymer. In this study, the various water-insoluble PVA membranes were prepared through the non-solvent induced phase separation process so that they can be used in water environments while maintaining the characteristics of PVA. And the following results were obtained by testing the coating, coagulation conditions for pore formation, and crosslinking conditions for water stability of the PVA membrane. As a result of the experiment by selecting various non-solvents to induce micropores of PVA membrane through the phase separation, it was confirms that micropores were well formed when ethyl alcohol was used as a non-solvent. To make a stable PVA membrane in the water environment, crosslinking was performed on the PVA membrane using sulfosuccinic acid (SSA) and glutaraldehyde (GA). As a result, it was confirmed that the pores formed by phase separation process were well maintained when crosslinking was performed under the conditions of GA rather than SSA. This could be explained from the results of FT-IR analysis, which confirmed the shift of the -OH peak and the split of the -CH2- peak due to the crosslinking of PVA and GA. In addition, in order to examine the water stability of the PVA membrane in a water environment, when the membranes prepared by various the crosslinking methods were immersed in hot water at 60 ℃ for 48 hours, it was confirmed that the crosslinked membrane under the GA condition showed a weight loss of about 12.2% lower than that of the SSA, and the micropores of the membrane were also well maintained.

키워드

과제정보

본 연구는 산업통상자원부의 2020년 전략핵심소재자립화기술개발사업(고내열성 섬유기반의 3차원 다공구조 난연소화 분리막 개발)으로 수행되었습니다.

참고문헌

  1. W. S. Winston Ho, and K. K. Sirkar, "Membrane Handbook", Springer Science & Business Media, NY, 1992. 
  2. R. W. Baker, "Membrane Technology and Applications", John Wiley & Sons, Chichester, 2004. 
  3. N. U. Kim, B. J. Park, M. S. Park, and J. H. Kim, "Effect of PVP on CO2/N2 Separation Performance of Self-crosslinkable P(GMA-g-PPG)-co-POEM) Membranes", Membr. J., 2018, 28, 113-120.  https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.113
  4. S. J. Moon, Y. J. Kim, and J. H. Kim, "Tutorial Review on Membrane Classification and Preparation Methods", Membr. J., 2022, 32, 198-208.  https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.3.198
  5. H. S. Bierenbaum, R. B. Isaacson, M. L. Druin, and S. G. Plovan, "Microporous Polymeric Films", Ind. Eng. Chem. Prod. Res. Dev., 1974, 13, 2-9.  https://doi.org/10.1021/i360049a002
  6. R. W. Gore, "Porous Products and Process Therefor", US Patent, 4,187,390 (1980). 
  7. M. K. Sinha and M. K. Purkait, "Preparation and Characterization of Novel Pegylated Hydrophilic pH Responsive Polysulfone Ultrafiltration Membrane", J. Membr. Sci., 2014, 464, 20-32.  https://doi.org/10.1016/j.memsci.2014.03.067
  8. Z. X. Low, A. Razmjou, K. Wang, S. Gray, M. Duke, and H. Wang, "Effect of Addition of Two-dimensional ZIF-L Nanoflakes on the Properties of Polyethersulfone Ultrafiltration Membrane", J. Membr. Sci., 2014, 460, 9-17.  https://doi.org/10.1016/j.memsci.2014.02.026
  9. Y. Zhang, J. Zhao, H. Chu, X. Zhou, and Y. Wei, "Effect of Modified Attapulgite Addition on the Performance of a PVDF Ultrafiltration Membrane", Desalination, 2014, 344, 71-78.  https://doi.org/10.1016/j.desal.2014.03.007
  10. H. Jang, I. C. Kim, and Y. Lee, "Membrane Permeation Characteristics and Fouling Control through the Coating of Poly(vinyl alcohol) on PVDF Membrane Surface", Membr. J., 2014, 24, 276-284.  https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.276
  11. A. Jayalakshmi, I. C. Kim, and Y. N. Kwon, "Cellulose Acetate Graft-(glycidylmethacrylate-g-PEG) for Modification of AMC Ultrafiltration Membranes to Mitigate Organic Fouling", RSC Adv., 2015, 5, 48290-48300.  https://doi.org/10.1039/C5RA03499J
  12. W. Sun, J. Liu, H. Chu, and B. Dong, "Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling", Membranes, 2013, 3, 226-241.  https://doi.org/10.3390/membranes3030226
  13. J. H. Wang, Y. Qing, and C. Qing, "Surface Electrokinetic Behavior of PVDF Hollow Fiber Ultrafiltration Membrane Modified by Low-temperature Plasma Method", Environ. Sci. Manag., 2009, 34, 54-57. 
  14. R. Revanur, B. McCloskey, K. Breitenkamp, B. D. Freeman, and T. Emrick, "Reactive Amphiphilic Graft Copolymer Coatings Applied to Poly(vinylidene fluoride) Ultrafiltration Membranes", Macromolecules, 2007, 40, 3624-3630.  https://doi.org/10.1021/ma0701033
  15. S. C. Pesek and W. J. Koros, "Aqueous Quenched Asymmetric Polysulfone Membranes Prepared by Dry/Wet Phase Separation", J. Membr. Sci., 1993, 81, 71-88.  https://doi.org/10.1016/0376-7388(93)85032-R
  16. P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, and J. Feijen, "Phase Separation Processes in Polymer Solutions in Relation to Membrane Formation", J. Membr. Sci., 1996, 117, 1-31.  https://doi.org/10.1016/0376-7388(96)00088-9
  17. T. I. Yun, M. Y. Seo, H. I. Cho, S. Y. Ha, S. Y. Nam, and J. W. Rhim, "Performance Investigation of Water Vapor Permeation Using PVA/PSSA-MA Membranes", Membr. J., 2006, 16, 153-158. 
  18. H. I. Cho, D. H. Kim, S. Y. Ha, S. Y. Nam, and J. W. Rhim, "Permeation Characteristics of Water Vapor Through PVA/PSSA_MA/THS-PSA Membranes", Membr. J., 2007, 17, 140-145. 
  19. H. Koh, C. Lee, S. Y. Ha, W. M. Choi, J. Rhim, and S. Nam, "Developing Trend of Gas Separation Membrane for Dehumidification", KIC News, 2011, 14, 25-36. 
  20. W. Xiao, L. Zhao, Y. Gong, J. Liu, and C. Yan, "Preparation and Performance of Poly(vinyl alcohol) Porous Separator for Lithium-ion Batteries", J. Membr. Sci., 2015, 487, 221-228.  https://doi.org/10.1016/j.memsci.2015.04.004
  21. A. L. Ahmad, N. M. Yusuf, and B. S. Ooi, "Preparation and Modification of Poly(vinyl) Alcohol Membrane: Effect of Crosslinking Time Towards Its Morphology", Desalination, 2012, 287, 35-40.  https://doi.org/10.1016/j.desal.2011.12.003
  22. M. M. Gomaa, C. Hugenschmidt, M. Dickmann, E. E. Abdel-Hady, H. F. M. Mohamed, and M. O. Abdel-Hamed, "Crosslinked PVA/SSA Proton Exchange Membranes: Correlation between Physiochemical Properties and Free Volume Determined by Positron Annihilation Spectroscopy", Phys. Chem. Chem. Phys., 2018, 20, 28287-28299.  https://doi.org/10.1039/C8CP05301D
  23. K. J. Kim, S. B. Lee, and N. W. Han, "Kinetics of Crosslinking Reaction of PVA Membrane with Glutaraldehyde", Korean J. Chem. Eng., 1994, 11, 41-47.  https://doi.org/10.1007/BF02697513
  24. J. T. Jung, J. F. Kim, H. H. Wang, E. di Nicolo, E. Drioli, and Y. M. Lee, "Understanding the Non-solvent Induced Phase Separation (NIPS) Effect during the Fabrication of Microporous PVDF Membranes via Thermally Induced Phase Separation (TIPS)", J. Membr. Sci., 2016, 514, 250-263.  https://doi.org/10.1016/j.memsci.2016.04.069
  25. T. M. S. U. Gunathilake, Y. C. Ching, H. Uyama, N. D. Hai, and C. H. Chuah, "Enhanced Curcumin Loaded Nanocellulose: a Possible Inhalable Nanotherapeutic to Treat COVID-19", Cellulose, 2022, 29, 1821-1840.  https://doi.org/10.1007/s10570-021-04391-8
  26. Z. Zhang, Y. Liu, S. Lin, and Q. Wang, "Preparation and Properties of Glutaraldehyde Crosslinked Poly(vinyl alcohol) Membrane with Gradient Structure", J. Polym. Res., 2020, 27, 1-7. https://doi.org/10.1007/s10965-019-1979-y