DOI QR코드

DOI QR Code

EMG 전극소재로 적합한 전도성 원단 성능 및 안정성 평가

Evaluation of Performance and Stability of Conductive Fabric as EMG Electrode Materials

  • 구본학 (숭실대학교 신소재공학과) ;
  • 이찬진 (숭실대학교 신소재공학과) ;
  • 김주용 (숭실대학교 신소재공학과)
  • Bon-Hak Koo (Department of Materials Science & Engineering, Soongsil University) ;
  • Chan-Jin Lee (Department of Materials Science & Engineering, Soongsil University) ;
  • Joo-yong Kim (Department of Materials Science & Engineering, Soongsil University)
  • 투고 : 2023.06.06
  • 심사 : 2023.07.24
  • 발행 : 2023.08.31

초록

Since the pandemic, there have been ongoing research studies on EMG textile electrodes as people's exercise spaces have changed. However, electrodes require high pressure during exercise, and incomplete compression during exercise necessitates research on materials. In this study, we investigated the correlation between the properties of conductive fabrics suitable for the stability and performance of dry textile electrodes. We examined the properties of five types of conductive fabrics, fabricated and attached electrodes, and placed EMG sensors on the biceps according to the SENIAM guidelines to obtain signals. We also demonstrated the correlation between the stability of the signal and the stiffness of the fabric, showing that there is an association with the modulus of the fabric. The results showed that a higher modulus led to lower SNR standard deviation, indicating better performance stability, while a lower resistance resulted in a higher SNR mean, indicating improved performance of the conductive fabric. The study revealed the correlation between the properties of conductive fabrics and EMG performance, demonstrating the ability to design suitable fabrics for textile electrodes.

키워드

과제정보

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2023년 산업혁신인재성장지원사업).

참고문헌

  1. J. Kwon and S. Nam, "How Has the Home Training Trend Changed before and after the COVID-19 Pandemic?", J. Sport and Leisure Studies, 2022, 90, 279-293. https://doi.org/10.51979/KSSLS.2022.10.90.279
  2. E. Noh and J. Choi, "Suggestion of Home Fitness Product Concept for Muscle Exercise Guide", KSDS Conference Proceeding, 2020, pp.228-229.
  3. K. Choi and C. Joong, "Development of Mobility and Vitality Signal Monitoring System Based on ZigBee-PSTN Gateway for the Elderly", J. Korea Inst. Inf. Electr. Commun., 2016, 9, 9-14. https://doi.org/10.17661/jkiiect.2016.9.1.009
  4. A. Junlasat, T. Kamolklang, P. Uthansakul, and M. Uthansakul, "Finger Movement Detection Based on Multiple EMG Positions", 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE), 2019, pp.1-4.
  5. L. Hyojeong and L. Yejin, "Investigation of Design Conditions to Improve the Reliability of sEMG Data for Textile Electrodes", Ergonomics Society of Korea, 2020, pp.287-288.
  6. T. Finni, M. Hu, P. Kettunen, T. Vilavuo, and S. Cheng, "Measurement of EMG Activity with Textile Electrodes Embedded into Clothing", Physiological Measurement, 2007, 28, 1405-19. https://doi.org/10.1088/0967-3334/28/11/007
  7. S. Kim, S. Lee, and W. Jeong, "EMG Measurement with Textile-based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization", Polymers, 2020, 12, 2406.
  8. L. E. Crawford and D. T. Vavra, "Typing with EMG Using MyoWare", UR Scholarship Repository, 2016.
  9. C. J. De Luca, A. Adam, R. Wotiz, L. D. Gilmore, and S. H. Nawab, "Decomposition of Surface EMG Signals", Journal of Neurophysiology, 2006, 96, 1646-1657. https://doi.org/10.1152/jn.00009.2006
  10. S. Solnik, P. DeVita, P. Rider, B. Long, and T. Hortobagyi, "Teager-Kaiser Operator Improves the Accuracy of EMG Onset Detection Independent of Signal-to-noise Ratio", Acta of Bioengineering and Biomechanics, 2008, 10, 65-68.
  11. P. Laferriere, E. D. Lemaire, and A. D. Chan, "Surface Electromyographic Signals Using Dry Electrodes", IEEE Transactions on Instrumentation and Measurement, 2011, 60, 3259-3268. https://doi.org/10.1109/TIM.2011.2164279
  12. F. K. Byondi and Y. Chung, "UHF RFID Conductive Fabric Tag Design Optimization", Sensors, 2021, 21, 5380.
  13. A. Standard, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials", ASTM International, 2008.
  14. Flexural Properties of Textile Materials, https://textilestudycenter.com/flexural-properties-of-textile-materials (Accessed May 21, 2023).
  15. P. Ma and Z. Gao, "A Review on the Impact Tension Behaviors of Textile Structural Composites", J. Ind. Text., 2015, 44, 572-604. https://doi.org/10.1177/1528083713503001
  16. J. E. Masters and P. G. Ifju, "A Phenomenological Study of Triaxially Braided Textile Composites Loaded in Tension", Compos. Sci. Technol., 1996, 56, 347-358. https://doi.org/10.1016/0266-3538(95)00106-9
  17. S. H. Roy, G. De Luca, M. S. Cheng, A. Johansson, L. D. Gilmore, and C. J. De Luca, "Electro-mechanical Stability of Surface EMG Sensors", Med. Biol. Eng. Comput., 2007, 45, 447-457. https://doi.org/10.1007/s11517-007-0168-z
  18. D. Tkach, H. Huang, and T. A. Kuiken, "Study of Stability of Time-domain Features for Electromyographic Pattern Recognition", J. Neuroeng. Rehabil., 2010, 7, 1-13. https://doi.org/10.1186/1743-0003-7-1
  19. A. Comert, M. Honkala, and J. Hyttinen, "Effect of Pressure and Padding on Motion Artifact of Textile Electrodes", Biomed. Eng. Online, 2013, 12, 1-18. https://doi.org/10.1186/1475-925X-12-1
  20. W. Zhou, S. Yao, H. Wang, Q. Du, Y. Ma, and Y. Zhu, "Gas-permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes", ACS Nano, 2020, 14, 5798-5805. https://doi.org/10.1021/acsnano.0c00906
  21. Y. M. Chi, T.-P. Jung, and G. Cauwenberghs, "Dry-contact and Noncontact Biopotential Electrodes: Methodological Review", IEEE Rev. Biomed. Eng., 2010, 3, 106-119. https://doi.org/10.1109/RBME.2010.2084078
  22. M. Fernandez and R. Pallas-Areny, "Electrode Contact noise in Surface Biopotential Measurements", Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1992, Vol. 1, pp.123-124.
  23. J. H. Nagel, "Biopotential Amplifiers", The Biomedical Engineering Handbook, 2000, Vol. 2, p.1300.
  24. J. Akita, T. Shinmura, S. Sakurazawa, K. Yanagihara, M. Kunita, M. Toda, and K. Iwata, "Wearable Electromyography Measurement System Using Cable-free Network System on Conductive Fabric", Artificial Intelligence in Medicine, 2008, 42, 99-108. https://doi.org/10.1016/j.artmed.2007.11.003
  25. S. H. Lee, S. M. Jung, C. K. Lee, K. S. Jeong, G. Cho, and S. K. Yoo, "Wearable ECG Monitoring System Using Conductive Fabrics and Active Electrodes", Human-Computer Interaction. Ambient, Ubiquitous and Intelligent Interaction, 2009, pp.778-783.