DOI QR코드

DOI QR Code

Adsorption Characteristics of Carbonized Fabric Made of Hanji Yarn/FR-rayon Composite Yarn

탄화 한지사/난연 레이온 복합사 직물의 흡착 특성

  • Gang-Hoon Kim (Ssang Young Spinning Ltd.) ;
  • Hae-Cheon Seo (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Hong In Bae (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Do Hwan Kim (Department of Organic Materials and Textile Engineering, Jeonbuk National University) ;
  • Myung-Seob Khil (Department of Organic Materials and Textile Engineering, Jeonbuk National University)
  • 김강훈 (쌍영방적(주)) ;
  • 서해천 (전북대학교 유기소재섬유공학과) ;
  • 배홍인 (전북대학교 유기소재섬유공학과) ;
  • 김도환 (전북대학교 유기소재섬유공학과) ;
  • 길명섭 (전북대학교 유기소재섬유공학과)
  • Received : 2023.06.08
  • Accepted : 2023.06.24
  • Published : 2023.06.30

Abstract

The carbonized fabric with different Hanji yarn/FR-rayon composition was prepared to characterize morphological, chemical, and adsorption properties after heat treatment such as stabilization (280 ℃) and carbonization (600 and 800 ℃). The HR67 800 (Hanji yarn/FR-rayon=67/33 wt/wt%, carbonization 800 ℃) showed the highest specific surface area of 567.52 m2/g and total pore volume of 0.2491 cm3/g, which exhibited the highest ammonia gas adsorption and toluene liquid adsorption. It was confirmed that the gas adsorption characteristics of as-prepared fabric were dominated by the carbonization temperature, while its liquid adsorption was dominated by the Hanji yarn content.

Keywords

Acknowledgement

이 논문은 2020년 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0017002, 2021년 산업혁신인재성장지원사업).

References

  1. J. F. J. R. Pesqueira, M. F. R. Pereira, and A. M. T. Silva, "Environmental Impact Assessment of Advanced Urban Wastewater Treatment Technologies for the Removal of Priority Substances and Contaminants of Emerging Concern: A Review", J. Clean. Prod., 2020, 261, 121078.
  2. M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, N. S. Thomaidis, and J. Xu, "Progress in the Biological and Chemical Treatment Technologies for Emerging Contaminant Removal from Wastewater: A Critical Review", J. Hazard. Mater., 2017, 323, 274-298. https://doi.org/10.1016/j.jhazmat.2016.04.045
  3. Z. Lu, W. Sun, C. Li, W. Cao, Z. Jing, S. Li, X. Ao, C. Chen, and S. Liu, "Effect of Granular Activated Carbon Pore-size Distribution on Biological Activated Carbon Filter Performance", Water Res., 2020, 177, 115768.
  4. M. Mallek, M. Chtourou, M. Portillo, H. Monclus, K. Walha, A. b. Salah, and V. Salvado, "Granulated Cork as Biosorbent for the Removal of Phenol Derivatives and Emerging Contaminants", J. Environ. Manage., 2018, 223, 576-585. https://doi.org/10.1016/j.jenvman.2018.06.069
  5. L. Lima, B. E. L. Baeta, D. R. S. Lima, R. J. C. F. Afonso, S. F. de Aquino, and M. Libanio, "Comparison between Two Forms of Granular Activated Carbon for the Removal of Pharmaceuticals from Different Waters", Environ. Technol., 2016, 37, 1334-1345. https://doi.org/10.1080/09593330.2015.1114030
  6. D. Liu, Q. Xie, X. Huang, C. Wan, F. Deng, D. Liang, and J. Liu, "Backwashing Behavior and Hydrodynamic Performances of Granular Activated Carbon Blends", Environ. Res., 2020, 184, 109302.
  7. Y. Dai, M. Liu, J. Li, S. Yang, Y. Sun, Q. Sun, W. Wang, L. Lu, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, and Z. Liu, "A Review on Pollution Situation and Treatment Methods of Tetracycline in Groundwater", Sep. Sci. Technol., 2020, 55, 1005-1021. https://doi.org/10.1080/01496395.2019.1577445
  8. Z. Wang and J. S. Zhang, "Characterization and Performance Evaluation of a Full-scale Activated Carbon-based Dynamic Botanical Air Filtration System for Improving Indoor Air Quality", Build. Environ., 2011, 46, 758-768. https://doi.org/10.1016/j.buildenv.2010.10.008
  9. F. Sher, K. Hanif, A. Rafey, U. Khalid, A. Zafar, M. Ameen, and E. C. Lima, "Removal of Micropollutants from Municipal Wastewater Using Different Types of Activated Carbons", J. Environ. Manage., 2021, 278, 111302.
  10. F. Ogata, H. Tominaga, H. Yabutani, A. Taga, and N. Kawasaki, "Granulation of Gibbsite with Inorganic Binder and Its Ability to Adsorb Mo(VI) from Aqueous Solution", Toxicol. Environ. Chem., 2012, 94, 650-659. https://doi.org/10.1080/02772248.2012.671325
  11. N. Saeidi and M. N. Lotfollahi, "Effects of Powder Activated Carbon Particle Size on Activated Carbon Monolith's Properties", Mater. Manuf. Proc., 2016, 31, 1634-1638. https://doi.org/10.1080/10426914.2015.1117630
  12. Z. Cai, X. Yang, G. Lin, C. A. Chen, Y. Chen, and B. Huang, "On Preparing Highly Abrasion Resistant Binderless and in situ N-doped Granular Activated Carbon", RSC Adv., 2018, 8, 20327-20333. https://doi.org/10.1039/C8RA03243B
  13. T. Lee, C. H. Ooi, R. Othman, and F. Y. Yeoh, "Activated Carbon Fiber-the Hybrid of Carbon Fiber and Activated Carbon", Rev. Adv. Mater. Sci., 2014, 36, 118-136.
  14. S. J. Park, Y. S. Jang, J. W. Shim, and S. K. Ryu, "Studies on Pore Structures and Surface Functional Groups of Pitch-based Activated Carbon Fibers", J. Colloid and Interface Sci., 2003, 260, 259-264. https://doi.org/10.1016/S0021-9797(02)00081-4
  15. H. Teng and H. C. Lin, "Activated Carbon Production from Low Ash Subbituminous Coal with CO2 Activation", AIChE J., 1998, 44, 1170-1177. https://doi.org/10.1002/aic.690440514
  16. M. P. Recobert, G. Trautwein, M. P. Cadenas, and J. A. Monge, "Preparation of Binderless Activated Carbon Monoliths from Cocoa Bean Husk", Microporous Mesoporous Mater., 2017, 243, 28-38. https://doi.org/10.1016/j.micromeso.2017.02.015
  17. M. Goncalves, C. S. Castro, I. K. V. Boas, F. C. Soler, E. d. C. Pinto, R. L. Lavall, and W. A. Carvalho, "Glycerin Waste as Sustainable Precursor for Activated Carbon Production: Adsorption Properties and Application in Supercapacitors", J. Environ. Chem. Eng., 2019, 7, 103059.
  18. M. S. Reza, C. S. Yun, S. Afroze, N. Radenahmad, M. S. A. Bakar, R. Saidur, J. Taweekun, and A. K. Azad, "Preparation of Activated Carbon from Biomass and its' Applications in Water and Gas Purification, a Review", Arab J. Basic and Appl. Sci., 2020, 27, 208-238. https://doi.org/10.1080/25765299.2020.1766799
  19. T. Y. Park and H. R. Jeon, "Manufacture and Property of Hanji Woven Fabric Using Hanji Tape Yarn", Text. Sci. Eng., 2008, 45, 302-307.
  20. I. H. Go and S. H. Jeong, "Anatomical, Morphological, and Chemical Characteristics of Paper-mulberry Wood and Bast Fiber for Raw Material of Korean Paper(Hanji)", J. Conserv. Sci., 2018, 34, 517-524. https://doi.org/10.12654/JCS.2018.34.6.07
  21. M. Danish and T. Ahmad, "A Review on Utilization of Wood Biomass as a Sustainable Precursor for Activated Carbon Production and Application", Renew. Sustain. Energy Rev., 2018, 87, 1-21. https://doi.org/10.1016/j.rser.2018.02.003
  22. Z. Li, X. Liu, X. Zhuang, Y. Guan, and K. Yao, "Manufacture and Properties of Chitosan/N,O-carboxymethylated Chitosan/viscose Rayon Antibacterial Fibers", J. Appl. Polym. Sci., 2002, 84, 2049-2059. https://doi.org/10.1002/app.10501
  23. K. E. Perepelkin, I. V. Andreeva, E. A. Pakshver, and I. Yu, Morgoeva, "Thermal Characteristics of Para-Aramid Fibres", Fibre Chem., 2003, 35, 265-269. https://doi.org/10.1023/B:FICH.0000003476.55891.26
  24. T. Takahashi, M. Hayashi, Y. Watanabe, H. Sadatomi, K. Matsumoto, and E. Shono, "Improving the Adsorption Performance and Surface Roughening of Rayon Fibers via Enzymatic Treatment with Cellulase", Text. Res. J., 2021, 91, 589-598. https://doi.org/10.1177/0040517520932394
  25. V. H. Pham and J. H. Dickerson, "Superhydrophobic Silanized Melamine Sponges as High Efficiency Oil Absorbent Materials", ACS Appl. Mater. Interfaces, 2014, 6, 14181-14188. https://doi.org/10.1021/am503503m