DOI QR코드

DOI QR Code

비용매 유도 상전이법을 이용한 혈액투석막의 제조 및 분리 특성 평가

Manufacturing and Separation Characteristics Evaluation of Hemodialysis Membrane Using NIPS

  • 이경태 (건양대학교 의료신소재학과) ;
  • 오도창 (건양대학교 의공학과) ;
  • 홍영기 (건양대학교 의료신소재학과)
  • Gyeong Tae Lee (Department of Biomedical Materials, Konyang University) ;
  • Do Chang Oh (Department of Biomedical Engineering, Konyang University) ;
  • Young Ki Hong (Department of Biomedical Materials, Konyang University)
  • 투고 : 2023.04.24
  • 심사 : 2023.05.27
  • 발행 : 2023.06.30

초록

Hemodialysis is one of the most common kidney replacement methods such as kidney transplantation and peritoneal dialysis for patients with kidney disease such as renal failure. In this study, a polymer solution containing polyethersulfone(PES) as the main raw material and polyvinylpyrrolidone(PVP), a hydrophilic polymer, was prepared by using different types of non-solvent when manufacturing hemodialysis membranes using the non-solvent induced phase separation(NIPS) method. The characteristics of the manufactured hemodialysis membrane were analyzed through ATR-FTIR and SEM, and the separation charateristics of the hemodialysis membrane were evaluated by performing simulated dialysis using artificial blood and dialysate. As a result, the chemical structure of the manufactured hemodialysis membranes did not change depending on the type of non-solvent, and in the case of the cross-sectional structure, a finger-like structure and a sponge structure were confirmed according to the non-solvent. The maximum removal rate of toxic materials were Urea 56.97% and Creatinine 52.71%, and protein loss was less than 6%. In addition, cell viability was evaluated as up to 92.4%. The biocompatibility and functionality of the hemodialysis membrane made of PES were confirmed.

키워드

과제정보

이 논문은 2022학년도 건양대학교 학술연구비 지원에 의하여 이루어진 것임.

참고문헌

  1. U. Eduok, A. Abdelrasoul, A. Shoker, and H. Doan, "Recent Developments, Current Challenges and Future Perspectives on Cellulosic Hemodialysis Membranes for Highly Efficient Clearance of Uremic Toxins", Mater. Today Commun., 2021, 27, 102183.
  2. L. Zhang, Y. Guo, and H. Ming, "Effects of Hemodialysis, Peritoneal Dialysis, and Renal Transplantation on the Quality of Life of Patients with End-stage Renal Disease", Revista da Associacao Medica Brasileira, 2020, 66, 1229-1234. https://doi.org/10.1590/1806-9282.66.9.1229
  3. S. Elshahat, P. Cockwell, A. P. Maxwell, M. Griffin, T. O'Brien, and O'Neill, "The Impact of Chronic Kidney Disease on Developed Countries from a Health Economics Perspective: a Systematic Scoping Review", PLoS One, 2020, 15, e0230512.
  4. A. F. Ismail, M. N. Z. Abidin, S. Mansur, M. Z. Zailani, N. Said, Y. Raharjo, S. M. Rosid, M. H. D. Othman, P. S. Goh, and H. Hasbullah, "Hemodialysis Membrane for Blood Purification Process", Membrane Separation Principles and Application, 2019, 2853-314.
  5. M. K. V. Gelder, J. A. W. Jong, L. Folkertsma, Y. Guo, C. Bluchel, M. C. Verhaar, M. Odijk, C. F. V. Nostrum, W. E. Hennink, and K. G. F. Gerritsen, "Urea Removal Strategies for Dialysate Regeneration in a Wearable Artificial Kidney", Biomaterials, 2020, 234, 119735.
  6. X. Zheng, C. Ni, W. Xiao, G. Yu, and Y. Li, "In Vitro Hemocompatibility and Hemodialysis Performance of Hydrophilic Ionic Liquid Grafted Polyethersulfone Hollow Fiber Membranes", Sep. Purif. Technol., 2022, 298, 121464.
  7. Z. Zhang, Y. Zhao, X. Luo, S. Feng, and L. Wu, "Preparation of a Heparin-like Functionalized Tannic Acid-coated Polyethersulfone Ultrafiltration Membrane for Hemodialysis by a Simple Surface Modification Method", Appl. Surface Sci., 2022, 572, 151440.
  8. R. J. Binder, "Functions of Heat Shock Proteins in Pathways of the Innate and Adaptive Immune System", J. Immunol., 2014, 193, 5765-5771. https://doi.org/10.4049/jimmunol.1401417
  9. D. Zhang, A. Karkooti, L. Liu, M. Sadrzadeh, T. Thundat, Y. Liu, and R. Narain, "Fabrication of Antifouling and Antibacterial Polyethersulfone(PES)/cellulose Nanocrystals (CNC) Nanocomposite Membranes", J. Membr. Sci., 2018, 549, 350-356. https://doi.org/10.1016/j.memsci.2017.12.034
  10. S. Hasheminasab, J. Barzin, and R. Dehghan, "High-performance Hemodialysis Membrane: Influence of Polyethylene Glycol and Polyvinylpyrrolidone in the Polyethersulfone Membrane", J. Membr. Sci. Res., 2020, 6, 438-448.
  11. M. N. Z. Abidin, P. S. Goh, A. F. Ismail, M. H. D. Othman, H. Hasbullah, N. Said, S. H. S. A. Kadir, F. Kamal, M. S. Abdullah, and B. C. Ng, "Development of Biocompatible and Safe Polyethersulfone Hemodialysis Membrane Incorporated with Functionalized Multi-walled Carbon Nanotubes", Mater. Sci. Eng.: C, 2017, 77, 572-582. https://doi.org/10.1016/j.msec.2017.03.273
  12. S. Saadati, H. Westphalen, U. Eduok, A. Abdelrasoul, A. Shoker, P. Choi, H. Doan, F. Ein-Mozaffari, and N. Zhu, "Biocompatibility Enhancement of Hemodialysis Membranes Using a Novel Zwitterionic Copolymer: Experimental, in situ Synochrotron Imaging, Molecular Docking, and Clinical Inflammatory Biomarkers Investigations", Mater. Sci. Eng.: C, 2020, 117, 111301.
  13. H. Westphalen, A. Abdelrasoul, and A. Shoker, "Protein Adsorption Phenomena in Hemodialysis Membranes: Mechanisms, Influences of Clinical Practices, Modeling, and Chllenges", Colloid Interface Sci. Commun., 2021, 40, 100348.
  14. T. J. Oh and J. H. Nam, "Determination of Composition of Cyano-PPTA/PVP Blend UF Membrane and Its Permeation Proterty and Fouling Analysis with Water Soluble Polymer Solution", J. Korean Fiber Soc., 2004, 41, 186-195.
  15. J. Ren, X. Yang, W. Yan, X. Feng, Y. Zhao, and L. Chen, "mPEG-b-PES-mPEG-based Candidate Hemodialysis Membrane with Enhanced Performance in Sieving, Flux, and Hemocompatibility", J. Membr. Sci., 2022, 657, 120680.
  16. J. Barzin, S. S. Madaeni, H. Mirzadeh, and M. Mehrabzadeh, "Effect of Polyvinylpyrrolidone on Morphology and Performance of Hemodialysis Membranes Prepared from Polyether Sulfone", J. Appl. Polym. Sci., 2004, 92, 3804-3813. https://doi.org/10.1002/app.20395
  17. M. Irfan, A. Idris, N. M. Yusof, N. F. M. Khairuddin, and H. Akhmal, "Surface Modification and Performance Enhancement of Nano-hybrid f-MWCNT/PVP90/PES Hemodialysis Membranes", J. Membr. Sci., 2014, 467, 73-84. https://doi.org/10.1016/j.memsci.2014.05.001
  18. K. B. Im and Y. K. Hong, "Preparation of Inorganic/Organic Reverse Osmosis Composite Membrane and Its Performance for Desalination of Deep Ocean Water", Text. Sci. Eng., 2013, 50, 337-343. https://doi.org/10.12772/TSE.2013.50.337
  19. J. G. Wijmans, J. P. B. Baaij, and C. A. Smolders, "The Mechanism of Formation of Microporous of Skinned Membranes Produced by Immersion Precipitation", J. Membr. Sci., 1983, 14, 263-274. https://doi.org/10.1016/0376-7388(83)80005-2
  20. J. M. Lee, J. H. Park, D. J. Kim, M. G. Lee, and S. Y. Nam, "Characterization and Preparation of Polymide Copolymer Membranes by Non-solvent Induced Phase Separation Method", Membr. J., 2015, 25, 343-351. https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.343
  21. B. Vatsha, J. C. Ngila, and R. M. Moutloali, "Preparation of Antifouling Polyvinylpryrrolidone (PVP 40K) Modified Polyethersulfone (PES) Ultrafiltration (UF) Membrane for Water Purification", Physics and Chemistry of the Earth, Part A/B/C, 2014, 67-69, 125-131. https://doi.org/10.1016/j.pce.2013.09.021
  22. Y. Wu, J. Zeng, Y. Zeng, H. Zhou, G. Liu, J. Jian, and J. Ding "Polyethersulfone-polyvinylpyrrolidone Composite Membranes: Effects of Polyvinylpyrrolidone Content and Polydopamine Coating on Membrane Morphology, Structure and Performances", Chinese J. Chem. Eng., 2021, 38, 84-97. https://doi.org/10.1016/j.cjche.2020.09.012
  23. J. Wu, Z. Wang, W. Yan, Y. Wang, J. Wang, and S. Wang, "Improving the Hydrophilicity and Fouling Resistance of RO Membrane by Surface Immobilization of PVP Based on a Metal-polyphenol Precursor Layer", J. Membr. Sci., 2015, 496, 58-63. https://doi.org/10.1016/j.memsci.2015.08.044