DOI QR코드

DOI QR Code

Synthesis of Castor Oil Based Water Borne Polyurethane/Graphene Nanocomposite as a Conductive Ink

나노잉크로서의 활용을 위한 캐스터 오일 기반 수분산 폴리우레탄/그래핀 복합재의 합성

  • Soo Young Lee (Department of Organic Materials and Polymer Engineering, Dong-A University) ;
  • Seo Yeong Park (Department of Chemical Engineering, Dong-A University) ;
  • Kuruma Malkappa (Department of Fashion Design, Dong-A University) ;
  • Sunhee Lee (Department of Fashion Design, Dong-A University) ;
  • Eun Joo Shin (Department of Chemical Engineering, Dong-A University) ;
  • Hyeong Yeol Choi (Department of Fashion Design, Dong-A University)
  • Received : 2023.03.08
  • Accepted : 2023.04.28
  • Published : 2023.06.30

Abstract

In this study, we synthesized anionic waterborne polyurethane based on castor oil (CWPU), and prepared its nanocomposites by adding varying amounts of graphene (Gr) to demonstrate its potential as a conductive ink. The physical appearance, thermal, mechanical, and electrical properties of The CWPU and CWPU/Gr composite films were investigated, as well as their electric heating behaviors. The prepared CWPU/Gr composite films exhibited excellent thermal, mechanical, and electrical properties due to the presence of graphene in the polymer matrix. The results from the thermogravimetric analysis showed that the increase in graphene content in the CWPU composite ink improved thermal stability. Moreover, the reinforcing effect of graphene in the CWPU polymer and its uniform distribution led to improvement in mechanical properties. We also analyzed the behavior of CWPU as an ink matrix in terms of total mass fraction and the effect of graphene content. Notably, when the mass fractions were optimized, there was a significant increase in the electrical conductivity from 5.69×10-3 to 0.13 S/cm in the in-plane direction, which directly affected the electrical heating behavior. Finally, we report a study using CWPU and graphene as conductive inks with excellent electrical properties.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT of Korea government (MSIT) (No. NRF-2021R1A4A1022059).

References

  1. D. S. Saidina, N. Eawwiboonthanakit, M. Mariatti, S. Fontana and C. Herold, "Recent Development of Graphene-based Ink and other Conductive Material-based Inks for Flexible Electronics", J. Electron. Mater., 2019, 48, 3428-3450.  https://doi.org/10.1007/s11664-019-07183-w
  2. A. Kamyshny and S. Magdassi, "Conductive Nanomaterials for Printed Electronics", Small., 2014, 10, 3515-3535.  https://doi.org/10.1002/smll.201303000
  3. V. Abhinav K, V. Krishna Rao R, P. S. Karthik, and S. Prakash Singh, "Copper Conductive Inks: Synthesis and Utilization in Flexible Electronics", RSC Adv., 2015, 5, 63985-64030.  https://doi.org/10.1039/C5RA08205F
  4. S. Naghdi, K. Y. Rhee, D. Hui, and S. J. Park, "A Review of Conductive Metal Nanomaterials as Conductive, Transparent, and Flexible Coatings, Thin Films, and Conductive Fillers: Different Deposition Methods and Applications", Coatings, 2018, 8, 278. 
  5. M. Salimi, Khoiee Mousavi, S. M. M. Khoiee, E. Keshavarz Alamdari, M. Rezaei, and M. Karbasi, "Nano Porous Zinc Synthesis on Soft Polyurethane Foam Using Conductive Ink and Electroplating Method", Metals, 2022, 12, 1945. 
  6. O. Ngamna, A. Morrin, A. J. Killard, S. E. Moulton, M. R. Smyth, and G. G. Wallace, "Inkjet Printable Polyaniline Nanoformulations", Langmuir, 2007, 23, 8569-8574.  https://doi.org/10.1021/la700540g
  7. Y. Z. N. Htwe, W. S. Chow, G. Suriati, A. A. Thant, and M. Mariatti, "Properties Enhancement of Graphene and Chemical Reduction Silver Nanoparticles Conductive Inks Printed on Polyvinyl Alcohol (PVA) Substrate", Synth. Met., 2019, 256, 116120. 
  8. C. Phillips, A. Al-Ahmadi, S.-J. Potts, T. Claypole, and D. Deganello, "The Effect of Graphite and Carbon Black Ratios on Conductive Ink Performance", J. Mater. Sci., 2017, 52, 9520-9530.  https://doi.org/10.1007/s10853-017-1114-6
  9. L. Jiang, H. Hong, and J. Hu, "Facile Thermoplastic Polyurethane-based Multi-walled Carbon Nanotube Ink for Fabrication of Screen-printed Fabric Electrodes of Wearable etextiles with High Adhesion and Resistance Stability under Large Deformation", Text. Res. J., 91, 2487-2499. 
  10. L. Y. Xu, G. Y. Yang, H. Y. Jing, J. Wei, and Y. D. Han, "Ag-graphene Hybrid Conductive Ink for Writing Electronics", Nanotechnol., 2014, 25, 055201. 
  11. W. Yang and C. Wang, "Graphene and the Related Conductive Inks for Flexible Electronics", Mater. Chem. C., 2016, 4, 7193-7207.  https://doi.org/10.1039/C6TC01625A
  12. C. Shen and S. Olutunde Oyadiji, "The Processing and Analysis of Graphene and the Strength Enhancement Effect of Graphene-based Filler Materials: A Review", Mater. Today Phys., 2020, 15, 100257. 
  13. C. M. Chen, J. Q. Huang, Q. Zhang, W. Z. Gong, Q. H. Yang, M. Z. Wang, and Y. G. Yang, "Annealing a Graphene Oxide Film to Produce a Free Standing High Conductive Graphene Film", Carbon, 2012, 50, 659-667.  https://doi.org/10.1016/j.carbon.2011.09.022
  14. J. Geng and H. T. Jung, "Porphyrin Functionalized Graphene Sheets in Aqueous Suspensions: From the Preparation of Graphene Sheets to Highly Conductive Graphene Films", J. Phys. Chem. C., 2010, 114, 8227-8234.  https://doi.org/10.1021/jp1008779
  15. H. Liu, L. Zhang, Y. Guo, C. Cheng, L. Yang, L. Jiang, G. Yu, W. Hu, Y. Liu, and D. Zhu, "Reduction of Graphene Oxide to Highly Conductive Graphene by Lawesson's Reagent and Its Electrical Applications", J. Mater. Chem. C., 2013, 1, 3104-3109.  https://doi.org/10.1039/c3tc00067b
  16. H. Y. Choi, E. J. Shin, and S. H. Lee, "Design and Evaluation of 3D-printed Auxetic Structures Coated by CWPU/graphene as Strain Sensor", Sci. Rep., 2022, 12, 7780. 
  17. S. M. Choi, S. S. Han, and E. J. Shin, "Highly Stretchable Conductive Nanocomposite Films Using Regenerated Cellulose Nanoparticles", A.C.S. Appl. Polym. Mater., 2022, 2, 4387-4398.  https://doi.org/10.1021/acsapm.0c00294
  18. S. Hu, X. Luo, and Y. Li, "Polyols and Polyurethanes from the Liquefaction of Lignocellulosic Biomass", ChemSusChem., 2014, 7, 66-72.  https://doi.org/10.1002/cssc.201300760
  19. E. J. Shin and S. M. Choi, "Advances in Waterborne Polyurethane-based Biomaterials for Biomedical Applications", Nov. Biomater. Reg. Med., 2018, 1077, 251-283.  https://doi.org/10.1007/978-981-13-0947-2_14
  20. M. Kuruma and T. Jana, "Simultaneous Improvement of Tensile Strength and Elongation: An Unprecedented Observation in the Case of Hydroxyl Terminated Polybutadiene Polyurethanes", Ind. Eng. Chem. Res., 2013, 52, 12887-12896.  https://doi.org/10.1021/ie401923e
  21. G. M. Wu, Z. W. Kong, C. Chen, J. Chen, S. P. Huo, and J. C. Jiang, "Curing Kinetics of Lignin and Cardanol Based Novolac Epoxy Resin with Methyl Tetrahydrophthalic Anhydride", Thermochim. Acta, 2013, 551, 118-123.  https://doi.org/10.1016/j.tca.2012.10.014
  22. M. Kuruma and T. Jana, "Hydrophobic, Water-dispersible Polyurethane: Role of Polybutadiene Diol Structure", Eng. Chem. Res., 2015, 54, 7423-7435.  https://doi.org/10.1021/acs.iecr.5b01618
  23. M. Ghasemlou, F. Daver, E. P. Ivanova, and B. Adhikari "Polyurethanes from Seed Oil-based Polyols: A Review of Synthesis, Mechanical and Thermal Properties", Ind. Crops Prod., 2019, 142, 111841. 
  24. H. Olcay, E. D. Kocak, and Z. Yildiz, "Sustainability in the Textile and Apparel Industries: Sourcing Synthetic and Novel Alternative Raw Materials", Springer, 2020, pp.139-156. 
  25. D. Venkatesh and V. Jaisankar, "Synthesis and Characterization of Bio-polyurethanes Prepared Using Certain Bio-based Polyols", Mater. Today Proc., 2019, 14, 482-491.  https://doi.org/10.1016/j.matpr.2019.04.171
  26. C. Zhang, R. Ding, and M. R. Kessler, "Reduction of Epoxidized Vegetable Oils: A Novel Method to Prepare Bio-based Polyols for Polyurethanes", Macromol. Rapid Commun., 2014, 35, 1068-1074.  https://doi.org/10.1002/marc.201400039
  27. M. A. Corcuera, L. Rueda, B. Fernandez, F. Arbelaiz, C. Marieta, I. Mondragon, and A. Eceiza, "Microstructure and Properties of Polyurethanes Derived from Castor Oil", Polym. Degrad. Stab., 2010, 95, 2175-2184.  https://doi.org/10.1016/j.polymdegradstab.2010.03.001
  28. S. S. Panda, B. P. Panda, S. K. Nayak, and S. Mohanty, "A Review on Waterborne Thermosetting Polyurethane Coatings Based on Castor Oil: Synthesis, Characterization, and Application", Polym. Plast. Technol. Eng., 2018, 57, 500-522.  https://doi.org/10.1080/03602559.2016.1275681
  29. K. P. Somani, S. S. Kansara, N. K. Patel, and A. K. Rakshit, "Castor Oil Based Polyurethane Adhesives for Wood-to-wood Bonding", Int. J. Adhes. Adhes., 2003, 23, 269-275.  https://doi.org/10.1016/S0143-7496(03)00044-7
  30. S. M. Choi, S. Lee, and E. J. Shin, "Synthesis and Characterization of Biopolyol-Based Waterborne Polyurethane Modified through Complexation with Chitosan", Nanomater, 2022, 12, 1143. 
  31. S. M. Choi, S. Y. Lee, S. Lee, S. S. Han, and E. J. Shin, "In Situ Synthesis of Environmentally Friendly Waterborne Polyurethane Extended with Regenerated Cellulose Nanoparticles for Enhanced Mechanical Performances", Polymers, 2023, 15, 1541. 
  32. M. A. Alaa, K. Yusoh, and S. F. Hasany, "Synthesis and Characterization of Polyurethane-organoclay Nanocomposites Based on Renewable Castor Oil Polyols", Polym. Bull., 2015, 72, 1-17.  https://doi.org/10.1007/s00289-014-1255-6
  33. H. Liang, S. Wang, H. He, M. Wang, L. Liu, J. Lu, Y. Zhang, and C. Zhang, "Aqueous Anionic Polyurethane Dispersions from Castor Oil", Ind. Crops Prod., 2018, 122, 182-189.  https://doi.org/10.1016/j.indcrop.2018.05.079
  34. Y. Xia, Z. Zhang, M. R. Kessler, B. Brehm-Stecher, and R. C. Larock, "Antibacterial Soybean-oil-based Cationic Polyurethane Coatings Prepared from Different Amino Polyols", ChemSusChem., 2012, 5, 2221-2227.  https://doi.org/10.1002/cssc.201200352
  35. R. Chen, C. Zhang, and M. R. Kessler, "Anionic Waterborne Polyurethane Dispersion from a Bio-based Ionic Segment", R.S.C. Adv., 2014, 4, 35476-35483.  https://doi.org/10.1039/C4RA07519F
  36. Z. He, J. H. Byun, G. Zhou, B. J. Park, T. H. Kim, S. B. Lee, J. W. Yi, M. K. Um, and T. W. Chou, "Effect of MWCNT Content on the Mechanical and Strain-sensing Performance of Thermoplastic Polyurethane Composite Fibers", Carbon, 2019, 146, 701-708.  https://doi.org/10.1016/j.carbon.2019.02.060
  37. U. Khan, P. May, A. O. Neill, and J. N. Coleman, "Development of Stiff, Strong, Yet Tough Composites by the Addition of Solvent Exfoliated Graphene to Polyurethane", Carbon, 2010, 48, 4035-4041.  https://doi.org/10.1016/j.carbon.2010.07.008
  38. Y. Yu, Y. Liu, F. Zhang, S. Jin, Y. Xiao, B. Xin, and Y. Zheng, "Preparation of Waterproof and Breathable Polyurethane Fiber Membrane Modified by Fluorosilane-modified Silica", Fiber. Polym., 2020, 21, 954-964.  https://doi.org/10.1007/s12221-020-9562-z
  39. J. Park and Y. G. Jeong, "Investigation of Microstructure and Electric Heating Behavior of Hybrid Polymer Composite Films Based on Thermally Stable Polybenzimidazole and Multiwalled Carbon Nanotube", Polym., 2015, 59, 102-109. https://doi.org/10.1016/j.polymer.2015.01.003