Acknowledgement
본 논문은 2021년도 정부 (과학기술정보통신부)의 재원으로 '자율주행기술개발혁신사업'의 지원을 받아 수행된 연구임 (No.2021-0-00905, (3세부) Cloud, Edge, Car 3-Tier 연계 인지/판단/제어 SW 및 공통 SW 플랫폼 기술 개발).
References
- R. Padilla, S. L. Netto, E. A. Da Silva, "A Survey on Performance Metrics for Object-detection Algorithms," 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237-242, 2020.
- A. Kumar, A. Kaur, M. Kumar, "Face Detection Techniques: A Review," Artificial Intelligence Review Vol. 52, pp. 927-948, 2019. https://doi.org/10.1007/s10462-018-9650-2
- Y. Kang, Z. Cai, C. W. Tan, Q. Huang, H. Liu, "Natural Language Processing (NLP) in Management Research: A Literature Review," Journal of Management Analytics Vol. 7, No. 2, pp. 139-172, 2020. https://doi.org/10.1080/23270012.2020.1756939
- J ,Chen, X. Ran, "Deep Learning with Edge Computing: A Review," Proceedings of the IEEE Vol. 107, No. 8, pp. 1655-1674, 2019. https://doi.org/10.1109/JPROC.2019.2921977
- T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang, Y. Hu, L. Ceze, "TVM: An Automated End-to-end Optimizing Compiler for Deep Learning," arXiv preprint arXiv:1802.04799, 2018.
- H. Wu, P. Judd, X. Zhang, M. Isaev, P. Micikevicius, "Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation," arXiv preprint arXiv:2004.09602, 2020.
- M. A. C. Fernandes, H. T. Kung, "A Novel Training Strategy for Deep Learning Model Compression Applied to Viral Classifications," 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1-9, 2021.
- Y. Zhou, X. Hu, L. Wang, G. Zhou, S. Duan, "QuantBayes: Weight Optimization for Memristive Neural Networks Via Quantization-aware Bayesian Inference," IEEE Transactions on Circuits and Systems I: Regular Papers Vol. 68, No. 12, pp. 4851-4861, 2021. https://doi.org/10.1109/TCSI.2021.3115787
- N. Shoghi, A. Bersatti, M. Qureshi, H. Kim, "SmaQ: Smart Quantization for DNN Training by Exploiting Value Clustering," IEEE Computer Architecture Letters Vol. 20, No. 2, pp. 126-129, 2021. https://doi.org/10.1109/LCA.2021.3108505
- B. Liberatori, C. A. Mami, G. Santacatterina, M. Zullich, F. A. Pellegrino, "YOLO-Based Face Mask Detection on Low-End Devices Using Pruning and Quantization," 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), pp. 900-905, 2022.
- S. Zhang, X. Li, C. Zhang, "Neural Network Quantization Methods For Voice Wake Up Network," Journal of Physics: Conference Series Vol. 1871, No. 1, pp. 012049, 2021.
- https://github.com/apache/tvm-rfcs/blob/main/rfcs/0006-AMP_pass.md
- M. H. Shin, I. K. Ye, D. W. Lee, "Performance Analysis on TVM Optimization for AI Framework in Autonomous Vehicles," Institute of Embedded Engineering of Korea (IEMEK), 2021 (in Korean).
- L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang, D. Zhuo, K. Sen, "Ansor: Generating High-performance Tensor Programs for Deep Learning," Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation, pp. 863-879, 2020.
- M. H. Shin, I. K. Ye, D. W. Lee, "A Study on the Effect of Low-level Code Optimization for DNNs via TVM Optimization Performance Analysis," Korea Institute of Military Science and Technology (KIMST), 2021 (in Korean).
- M. H. Shin, L. K. Ye, D. W. Lee, "A Study on TVM for the Embedded Software in Weapon Systems," The Korea Institute of Intelligent Transport Systems Vol. 2022, No. 6, pp. 246-251, 2022 (in Korean).
- H. A. Abdelhafez, H. Halawa, K. Pattabiraman, M. Ripeanu, "Snowflakes at the Edge: A Study of Variability Among NVIDIA Jetson AGX Xavier Boards," Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking, pp. 1-6, 2021.
- K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, "Mobilenetv2: Inverted Residuals and Linear Bottlenecks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510-4520, 2018.
- M. Tan, Q. Le, "Efficientnetv2: Smaller Models and Faster Training," International Conference on Machine Learning, pp. 10096-10106, 2021.
- J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, L. Fei-Fei, "Imagenet: A Large-scale Hierarchical Image Database," 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, 2009.
- Y. Wei-Wei, J. ZHANG, "Real-Time Drivers' Violation Behaviors Detection Based on Improved YOLOv3-tiny Algorithm-Based on Model Pruning and Half-Precision Acceleration [J]," Computer Systems & Applications Vol. 29, No. 04, pp. 41-47, 2020.
- D. Lin, S. Talathi, S. Annapureddy, "Fixed Point Quantization of Deep Convolutional Networks," International Conference on Machine Learning, pp. 2849-2858, 2016.
- P. Nayak, D. Zhang, S. Chai, "Bit Efficient Quantization for Deep Neural Networks," 2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition (EMC2-NIPS), pp. 52-56, 2019.
- S. Yang, R. Wu, M. Wang, L. Jiao, "Evolutionary Clustering Based Vector Quantization and SPIHT Coding for Image Compression," Pattern Recognition Letters Vol. 31, No. 13, pp. 1773-1780, 2010.
- R. C. O. Rocha, V. Porpodas, P. Petoumenos, L. F. Goes, Z. Wang, M. Cole, H. Leather, "Vectorization-aware Loop Unrolling with Seed Forwarding," Proceedings of the 29th International Conference on Compiler Construction, pp. 1-13, 2020.
- K. Hammond, S. P. Jones, "Profiling Scheduling Strategies on the GRIP Parallel Reducer," Submitted to Journal of Parallel and Distributed Computing, 1991.
- S. D. Hammond, C. T. Vaughan, D. Dinge, P. Lin, C. Hughes, C. R. Trott, J. Cook, R. J. Hoekstra, "Sandia ATDM Performance Execution Tools & Analysis," 2018.
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, "Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems," arXiv preprint arXiv:1603.04467, 2016.
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, "Pytorch: An Imperative Style, High-performance Deep Learning Library," Advances in Neural Information Processing Systems Vol. 32, 2019.
- J. Bai, F. Lu, K. Zhang, "Onnx: Open Neural Network Exchange," GitHub Repository, pp. 54, 2019.
- https://gist.github.com/masahi/e4c611694e3dfd307a8b6bba45eb1658
- G. Bradski, "The OpenCV Library," Dr. Dobb's Journal: Software Tools for the Professional Programmer Vol. 25, No. 11, pp. 120-123, 2000.
- S32V Vision and Sensor Fusion Evaluation Board. https://www.nxp.com/products/processors-and-microcontrollers/armbased-processors-and-mcus/s32-automotiveplatform/s32v-vision-andsensor-fusion-evaluation-board:SBC-S32V234
- D. H. Son, H. Y. Lee, D. H. Im, "Development of High Reliable Real-Time Operating System (RTWORKS) Based on Partitioning and Application of Weapon System," Communications of the Korean Institute of Information Scientists and Engineers Vol. 34, No. 10, pp. 53-59, 2016.