DOI QR코드

DOI QR Code

한국성인의 제2형 당뇨병 유무에 따른 체액 조성 차이 및 영양소 섭취량 분석

Analysis of difference in body fluid composition and dietary intake between Korean adults with and without type 2 diabetes mellitus

  • Yu-Gyeong Kim (Department of Food and Nutrition, Changwon National University) ;
  • Ha-Neul Choi (Department of Food and Nutrition, Changwon National University) ;
  • Jung-Eun Yim (Department of Food and Nutrition, Changwon National University)
  • 투고 : 2023.02.17
  • 심사 : 2023.07.17
  • 발행 : 2023.08.31

초록

본 연구는 한국인을 대상으로 제2형 당뇨병 환자와 질병이 없는 정상대조군을 비교하여 성별에 따른 체액 불균형 정도와 영양소 섭취량을 평가하고자 하였다. 조사대상자는 총 57명으로, T2DM이 있는 T2DM군 (n = 36)과 T2DM이 없는 정상대조군 (n = 21)으로 나누어 분석하고, 성별에 따른 체액량의 차이를 고려하여 남성 T2DM군 (n = 24), 남성 정상대조군 (n = 9), 여성 T2DM군 (n = 12), 여성 정상대조군 (n = 12)으로 세분화하여 지표들의 특징을 분석하였다. BIA를 통하여 연구대상자의 체액 조성을 분석한 결과, ECW/ICW는 T2DM군이 정상대조군보다 유의적으로 높았고, 부종지수를 나타내는 ECW/TBW는 T2DM군이 정상대조군보다 유의적으로 높게 나타났다. 성별에 따른 체액 조성을 분석한 결과, 남성과 여성 모두 T2DM군은 정상대조군보다 높은 ECW/ICW, ECW/TBW를 보이며 동일한 체수분율 양상이 나타났다. 식사일기를 통해 연구대상자의 영양소 섭취량을 분석한 결과, 1,000 kcal 당 탄수화물, 식이섬유, 비타민 A, 비타민 C, 나트륨, 칼륨 섭취량은 T2DM군이 정상대조군보다 많았고, 1,000 kcal 당 지방, 콜레스테롤 섭취량은 T2DM군이 정상대조군보다 적었다. 본 연구를 통해 T2DM 환자에게서 체액 불균형이 나타날 가능성이 높음을 알 수 있었으며 추후 당뇨 합병증의 평가, 진단의 기초 자료로 널리 활용될 것으로 사료된다.

Purpose: Diabetes mellitus (DM) causes body fluid imbalance because of hyperglycemia, but there is a lack of research on the relationship between DM and body fluid imbalance in the Korean population. This study compared the differences in body fluid composition and dietary intake between individuals with type 2 DM (T2DM) and a normal control (NC) group without the disease. Methods: In this study, 36 subjects with T2DM and 21 without diabetes were divided into the T2DM and NC groups. The subjects were divided into four subgroups to assess differences in body fluid volume according to sex: men T2DM group (n = 24), men NC group (n = 9), women T2DM group (n = 12), and women NC group (n = 12). The body fluid composition was measured using bioelectrical impedance analysis, including intracellular water (ICW), extracellular water (ECW), total body water (TBW), ECW/ICW, and ECW/TBW. Nutrient intake was evaluated using their dietary records. Results: The results showed that the ECW/ICW and the ECW/TBW were significantly higher in the T2DM group compared to the NC group. Both men and women in the T2DM group showed significantly higher ECW/ICW and ECW/TBW than the respective NC group. The T2DM group had a higher carbohydrate, dietary fiber, vitamin A, vitamin C, sodium, and potassium intake per 1,000 kcal and lower total daily energy, fat, and cholesterol intake per 1,000 kcal than the NC group. Conclusion: These results suggest a positive association between T2DM and body fluid imbalance. This study can be used widely as basic data for the evaluation and diagnosis of diabetic complications in the future.

키워드

과제정보

This research was funded by convergence research financial program for instructors, graduate students and professors in 2023.

참고문헌

  1. Bae JH, Han KD, Ko SH, Yang YS, Choi JH, Choi KM, et al. Diabetes fact sheet in Korea 2021. Diabetes Metab J 2022; 46(3): 417-426. https://doi.org/10.4093/dmj.2022.0106
  2. Blixt C, Larsson M, Isaksson B, Ljungqvist O, Rooyackers O. The effect of glucose control in liver surgery on glucose kinetics and insulin resistance. Clin Nutr 2021; 40(7): 4526-4534. https://doi.org/10.1016/j.clnu.2021.05.017
  3. Jaffrin MY, Morel H. Body fluid volumes measurements by impedance: a review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng Phys 2008; 30(10): 1257-1269. https://doi.org/10.1016/j.medengphy.2008.06.009
  4. Tittel SR, Sondern KM, Weyer M, Poeplau T, Sauer BM, Schebek M, et al. Multicentre analysis of hyperglycaemic hyperosmolar state and diabetic ketoacidosis in type 1 and type 2 diabetes. Acta Diabetol 2020; 57(10): 1245-1253. https://doi.org/10.1007/s00592-020-01538-0
  5. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375(9733): 2215-2222. https://doi.org/10.1016/S0140-6736(10)60484-9
  6. GBD 2019 Blindness and Vision Impairment CollaboratorsVision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 2021; 9(2): e144-e160. https://doi.org/10.1016/S2214-109X(20)30489-7
  7. Jing X, Chen J, Dong Y, Han D, Zhao H, Wang X, et al. Related factors of quality of life of type 2 diabetes patients: a systematic review and meta-analysis. Health Qual Life Outcomes 2018; 16(1): 189.
  8. Svane J, Pedersen-Bjergaard U, Tfelt-Hansen J. Diabetes and the risk of sudden cardiac death. Curr Cardiol Rep 2020; 22(10): 112.
  9. Shubrook JH, Chen W, Lim A. Evidence for the prevention of type 2 diabetes mellitus. J Am Osteopath Assoc 2018; 118(11): 730-737. https://doi.org/10.7556/jaoa.2018.158
  10. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119.
  11. Malbrain ML, Huygh J, Dabrowski W, De Waele JJ, Staelens A, Wauters J. The use of bio-electrical impedance analysis (BIA) to guide fluid management, resuscitation and deresuscitation in critically ill patients: a bench-to-bedside review. Anaesthesiol Intensive Ther 2014; 46(5): 381-391. https://doi.org/10.5603/AIT.2014.0061
  12. Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel) 2014; 14(6): 10895-10928. https://doi.org/10.3390/s140610895
  13. Flores-Garcia AL, Sanchez-Ramirez CA, Newton-Sanchez OA, Rojas-Larios F. Correlation between skinfold thickness and bioelectrical impedance analysis for the evaluation of body composition in patients on dialysis. Nutr Hosp 2018; 35(1): 117-122.
  14. Anand G, Yu Y, Lowe A, Kalra A. Bioimpedance analysis as a tool for hemodynamic monitoring: overview, methods and challenges. Physiol Meas 2021; 42(3): TR01.
  15. Mueller TC, Reik L, Prokopchuk O, Friess H, Martignoni ME. Measurement of body mass by bioelectrical impedance analysis and computed tomography in cancer patients with malnutrition - a cross-sectional observational study. Medicine (Baltimore) 2020; 99(50): e23642.
  16. Bera TK. Bioelectrical impedance methods for noninvasive health monitoring: a review. J Med Eng 2014; 2014: 381251.
  17. Zhang J, Zhang N, Du S, Liu S, Ma G. Effects of water restriction and water replenishment on the content of body water with bioelectrical impedance among young adults in Baoding, China: a randomized controlled trial (RCT). Nutrients 2021; 13(2): 553.
  18. Nishikawa H, Yoh K, Enomoto H, Ishii N, Iwata Y, Nakano C, et al. Extracellular water to total body water ratio in viral liver diseases: a study using bioimpedance analysis. Nutrients 2018; 10(8): 1072.
  19. Ohashi Y, Joki N, Yamazaki K, Kawamura T, Tai R, Oguchi H, et al. Changes in the fluid volume balance between intra- and extracellular water in a sample of Japanese adults aged 15-88 yr old: a cross-sectional study. Am J Physiol Renal Physiol 2018; 314(4): F614-F622. https://doi.org/10.1152/ajprenal.00477.2017
  20. Nakajima H, Hashimoto Y, Kaji A, Sakai R, Takahashi F, Yoshimura Y, et al. Impact of extracellular-to-intracellular fluid volume ratio on albuminuria in patients with type 2 diabetes: a cross-sectional and longitudinal cohort study. J Diabetes Investig 2021; 12(7): 1202-1211. https://doi.org/10.1111/jdi.13459
  21. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr 2004; 23(5): 1226-1243. https://doi.org/10.1016/j.clnu.2004.06.004
  22. Taniguchi M, Yamada Y, Fukumoto Y, Sawano S, Minami S, Ikezoe T, et al. Increase in echo intensity and extracellular-to-intracellular water ratio is independently associated with muscle weakness in elderly women. Eur J Appl Physiol 2017; 117(10): 2001-2007. https://doi.org/10.1007/s00421-017-3686-x
  23. Jang S, Kim H, Shin Y, Jin D. Changes of intracellular water by hemodialysis in diabetic and non-diabetic ESRD patients: analysis with MF-BIA. Kidney Res Clin Pract 2009; 28(6): 603-609. 
  24. Sukackiene D, Laucyte-Cibulskiene A, Vickiene A, Rimsevicius L, Miglinas M. Risk stratification for patients awaiting kidney transplantation: role of bioimpedance derived edema index and nutrition status. Clin Nutr 2020; 39(9): 2759-2763. https://doi.org/10.1016/j.clnu.2019.12.001
  25. Low S, Pek S, Liu YL, Moh A, Ang K, Tang WE, et al. Higher extracellular water to total body water ratio was associated with chronic kidney disease progression in type 2 diabetes. J Diabetes Complications 2021; 35(7): 107930.
  26. Low S, Ng TP, Lim CL, Ang SF, Moh A, Wang J, et al. Higher ratio of extracellular water to total body water was associated with reduced cognitive function in type 2 diabetes. J Diabetes 2021; 13(3): 222-231. https://doi.org/10.1111/1753-0407.13104
  27. Zhou C, Lin X, Ma G, Yuan J, Zha Y. Increased predialysis extracellular to intracellular water ratio is associated with sarcopenia in hemodialysis patients. J Ren Nutr 2023; 33(1): 157-164. https://doi.org/10.1053/j.jrn.2022.03.004
  28. Ohashi Y, Tai R, Aoki T, Mizuiri S, Ogura T, Tanaka Y, et al. The associations of malnutrition and aging with fluid volume imbalance between intra- and extracellular water in patients with chronic kidney disease. J Nutr Health Aging 2015; 19(10): 986-993.  https://doi.org/10.1007/s12603-015-0658-x
  29. Sainsbury E, Kizirian NV, Partridge SR, Gill T, Colagiuri S, Gibson AA. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract 2018; 139: 239-252. https://doi.org/10.1016/j.diabres.2018.02.026
  30. Papakonstantinou E, Oikonomou C, Nychas G, Dimitriadis GD. Effects of diet, lifestyle, chrononutrition and alternative dietary interventions on postprandial glycemia and insulin resistance. Nutrients 2022; 14(4): 823.
  31. Bolla AM, Caretto A, Laurenzi A, Scavini M, Piemonti L. Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutrients 2019; 11(5): 962.
  32. Neuenschwander M, Barbaresko J, Pischke CR, Iser N, Beckhaus J, Schwingshackl L, et al. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med 2020; 17(12): e1003347.
  33. Schlesinger S, Schwingshackl L, Neuenschwander M. Dietary fat and risk of type 2 diabetes. Curr Opin Lipidol 2019; 30(1): 37-43. https://doi.org/10.1097/MOL.0000000000000567
  34. Post RE, Mainous AG 3rd, King DE, Simpson KN. Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J Am Board Fam Med 2012; 25(1): 16-23. https://doi.org/10.3122/jabfm.2012.01.110148
  35. Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 2018; 108: 656-662. https://doi.org/10.1016/j.biopha.2018.09.058
  36. Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med 2020; 14(5): 583-600. https://doi.org/10.1007/s11684-019-0729-1
  37. Yosaee S, Akbari Fakhrabadi M, Shidfar F. Positive evidence for vitamin A role in prevention of type 1 diabetes. World J Diabetes 2016; 7(9): 177-188. https://doi.org/10.4239/wjd.v7.i9.177
  38. Namkhah Z, Ashtary-Larky D, Naeini F, Clark CC, Asbaghi O. Does vitamin C supplementation exert profitable effects on serum lipid profile in patients with type 2 diabetes? A systematic review and dose-response meta-analysis. Pharmacol Res 2021; 169: 105665.
  39. Das UN. Vitamin C for type 2 diabetes mellitus and hypertension. Arch Med Res 2019; 50(2): 11-14. https://doi.org/10.1016/j.arcmed.2019.05.004
  40. Lajous M, Bijon A, Fagherazzi G, Balkau B, Boutron-Ruault MC, Clavel-Chapelon F. Egg and cholesterol intake and incident type 2 diabetes among French women. Br J Nutr 2015; 114(10): 1667-1673. https://doi.org/10.1017/S0007114515003190
  41. Pohl HR, Wheeler JS, Murray HE. Sodium and potassium in health and disease. Met Ions Life Sci 2013; 13: 29-47. https://doi.org/10.1007/978-94-007-7500-8_2
  42. Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G. Sodium intake and hypertension. Nutrients 2019; 11(9): 1970.
  43. Adrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension: focus on the brain. Curr Opin Nephrol Hypertens 2017; 26(2): 106-113.
  44. Kolahdouz-Mohammadi R, Soltani S, Clayton ZS, Salehi-Abargouei A. Sodium status is associated with type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies. Eur J Nutr 2021; 60(7): 3543-3565. https://doi.org/10.1007/s00394-021-02595-z
  45. D'Elia L, Masulli M, Cappuccio FP, Zarrella AF, Strazzullo P, Galletti F. Dietary potassium intake and risk of diabetes: a systematic review and meta-analysis of prospective studies. Nutrients 2022; 14(22): 4785.
  46. Santoro D, Torreggiani M, Pellicano V, Cernaro V, Messina RM, Longhitano E, et al. Kidney biopsy in type 2 diabetic patients: critical reflections on present indications and diagnostic alternatives. Int J Mol Sci 2021; 22(11): 5425. 
  47. Cho S, Ahn H. Effect of distraction on hospitalized children's fear of hospital and needle-related pain. J Korean Acad Soc Nurs Educ 2013; 19(4): 684-692. https://doi.org/10.5977/jkasne.2013.19.4.684
  48. Kim S, Kim J, No I. Effects of lidocaine patch application to decrease pain and fear during blood sugar test in elderly patients with DM. J Korean Acad Fundam Nurs 2016; 23(1): 12-20. https://doi.org/10.7739/jkafn.2016.23.1.12