DOI QR코드

DOI QR Code

소성인장변형 몇 아연도금된 Fe-Mn-C계 TWIP 강의 전기화학적 수소투과거동

Electrochemical Hydrogen Permeation Behaviors of Pre-Strained Fe-Mn-C TWIP Steel With or Without Zn Coating

  • 김성진 (순천대학교 신소재공학과)
  • Sung Jin Kim (Department of Advanced Materials Engineering, Sunchon National University)
  • 투고 : 2023.05.31
  • 심사 : 2023.06.20
  • 발행 : 2023.08.30

초록

This study aimed to evaluate hydrogen permeation behaviors of pre-strained twinning-induced plasticity steel with or without Zn coating using electrochemical permeation technique. In contrast to un-strained and 30% strained samples, permeation current density was measured in the 60% strained sample. Tensile pre-straining at 60% involved microstructural modifications, including a high level of dislocation density and stacking fault with a semi-coherent twin boundary, which might provide a high diffusion path for hydrogen atoms. However, reproducibility of measurements of hydrogen permeation current was low due to non-uniform deformation and localized stress concentration. On the other hand, the permeation current was not measured in pre-strained TWIP steel with Zn coating. Instead, numerous blisters with some cracks were observed on the surface of the coating layer. In locally damaged Zn coating under tensile straining, hydrogen atoms could relatively easily permeate through the coating layer. However, they were trapped at the interface between the coating layer and the substrate, which might delay hydrogen penetration into the steel substrate.

키워드

과제정보

This research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C4001255).

참고문헌

  1. J. K. Jung, O. Y. Lee, Y. K. Park, D. E. Kim, and K. G. Jin, Hydrogen Embrittlement Behavior of High Mn TRIP/TWIP Steels, Korean Journal of Materials Research, 18, 394 (2008). Doi: https://doi.org/10.3740/MRSK.2008.18.7.394
  2. O. Grassel, L. Kruger, G. Frommeyer, and L. W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application, International Journal of Plasticity, 16, 1391 (2000). Doi: https://doi.org/10.1016/S0749-6419(00)00015-2
  3. O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Current Opinion In Solid State and Materials Science, 15, 141 (2011). Doi: https://doi.org/10.1016/j.cossms.2011.04.002
  4. Y. S. Chun, K. T. Park, and C. S. Lee, Delayed static failure of twinning-induced plasticity steels, Scripta Materialia, 66, 960 (2012). Doi: https://doi.org/10.1016/j.scriptamat.2012.02.038
  5. K. S. Kim, J. H. Kang, and S. J. Kim, Nitrogen effect on hydrogen diffusivity and hydrogen embrittlement behavior in austenitic stainless steels, Scripta Materialia, 184, 70 (2020). Doi: https://doi.org/10.1016/j.scriptamat.2020.03.038
  6. H. Ji, I. J. Park, S. M. Lee, and Y. K. Lee, The effect of pre-strain on hydrogen embrittlement in 310S stainless steel, Journal of Alloys and Compounds, 598, 205 (2014). Doi: https://doi.org/10.1016/j.jallcom.2014.02.038
  7. K. G. Chin, C. Y. Kang, S. Y. Shin, S. M. Hong, S. H. Lee, H. S. Kim, K. H. Kim, and N. J. Kim, Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels, Materials Science and Engineering A, 528, 2922 (2011). Doi: https://doi.org/10.1016/j.msea.2010.12.085
  8. ISO 17081:2004 (E), Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, ISO, Switzerland (2004).
  9. S. J. Kim and K. Y. Kim, Electrochemical hydrogen permeation measurement through high-strength steel under uniaxial tensile stress in plastic range, Scripta Materialia, 66, 1069 (2012). Doi: https://doi.org/10.1016/j.scriptamat.2012.03.001
  10. J. S. Park, H. J. Lee, and S. J. Kim, Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments, Korean Journal of Materials Research, 28, 286 (2018). Doi: https://doi.org/10.3740/MRSK.2018.28.5.286
  11. M. Kurkela, G. S. Frankel, R. M. Latanision, S. Suresh, and R. O. Ritchie, Influence of plastic deformation on hydrogen transport in 2 14 Cr-1Mo steel, Scripta Metallurgica, 16, 455 (1982). Doi: https://doi.org/10.1016/0036-9748(82)90172-7
  12. J. K. Jung, N. K. Kim, Y. S. Yeon, H. H. Kim, and O. Y. Lee, Effect of Annealing Temperature and Alloying Elements on the Mechanical Properties of Fe-Mn-C TWIP Steels, Korean Journal of Materials Research, 20, 385 (2010). Doi: https://doi.org/10.3740/MRSK.2010.20.7.385
  13. H. J. Cho, K. S. Kim, H. S. Noh, and S. J. Kim, Origin of deformation twins and their influence on hydrogen embrittlement in cold-rolled austenitic stainless steel, International Journal of Hydrogen Energy, 46, 22195 (2021). Doi: https://doi.org/10.1016/j.ijhydene.2021.04.045
  14. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metallurgical and Materials Transactions A, 40, 3076 (2009). Doi: https://doi.org/10.1007/s11661-009-0050-8
  15. S. K. Rajagopalan, pp. 203-204, McGill University, Montreal, Canada (2012).