References
- R. Hussain and T. Ishida, Multivariable Empirical Analysis of Coupled Oxygen and Moisture for Potential and Rate of Quantitative Corrosion in Concrete, Journal of Materials in Civil Engineering, 24, 7 (2012). Doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000474
- D. Bjegovic, D. Mikulic, and D. Sekulic, Proc. 15th World Conference on Non-Destructive Testing, p. 642, Roma, Italy (2000). https://www.ndt.net/article/wcndt00/papers/idn642/idn642.htm
- S. Ahmad, Reinforcement corrosion in concrete structures, its monitoring and service life prediction--a review, Cement and Concrete Composites, 25, 459 (2003). Doi: https://doi.org/10.1016/S0958-9465(02)00086-0
- NACE/ASTM G193-12D, Standard Terminology and Acronyms Relating to Corrosion (2012).
- C. M. Hansson, Comments on electrochemical measurements of the rate of corrosion of steel in concrete, Cement and Concrete Research, 14, 574 (1984). Doi: https://doi.org/10.1016/0008-8846(84)90135-2
- L. J. Parrott, A review of carbonation in reinforced concrete, Cement and Concrete Association (1987).
- A. Zaki, M. A. M. Johari, W. M. A. W. Hussin, and Y. Jusman, Experimental Assessment of Rebar Corrosion in Concrete Slab Using Ground Penetrating Radar (GPR), International Journal of Corrosion, 2018, Article ID 5389829 (2018). Doi: https://doi.org/10.1155/2018/5389829
- M. Alhawat, O. H. Zinkaah, and A. Araba, Study of corrosion products induced under different environmental conditions, IOP Conference Series: Materials Science and Engineering, 1090, 012050 (2021). Doi: https://doi.org/10.1088/1757-899x/1090/1/012050
- P. Schiessl, Report of the Technical Committee 60-CSC-RILEM (The International Union of Testing and Research Laboratories for Materials and Structures), Corrosion of Steel in Concrete, London, UK: Chapman and Hall, London (1988).
- P. Claisse, H. Elsayad, and E. Ganjian, Permeability and Pore Volume of Carbonated concrete European concerted action, Final report, Brussels (1997).
- T. Visalakshi and S. Bhalla, Proc. International Conference on Corrosion. CONCOR, New Delhi (2013).
- M. F. Montemor, A. M. P. Simoes, and M. G. S. Ferreira, Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques, Cement and Concrete Composites, 25, 491 (2003). Doi: https://doi.org/10.1016/S0958-9465(02)00089-6
- M. Moreno, W. Morris, M. G. Alvarez, and G. S. Duffo, Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content, Corrosion Science, 46, 2681 (2004). Doi: https://doi.org/10.1016/j.corsci.2004.03.013
- H. A. F. Dehwah, M. Maslehuddin, and S. A. Austin, Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes, Cement and Concrete Composites, 24, 17 (2002). Doi: https://doi.org/10.1016/S0958-9465(01)00023-3
- J. P. Broomfield, Corrosion of steel in concrete: understanding, investigation and repair, 3rd ed., p. 17, Crc Press, Florida (2023).
- S. E. Hussain, A. Al-Musallam, and A. S. Al-Gahtani, Factors affecting threshold chloride for reinforcement corrosion in concrete, Cement and Concrete Research, 25, 1543 (1995). Doi: https://doi.org/10.1016/0008-8846(95)00148-6
- G. K. Glass and N. R. Buenfeld, The presentation of the chloride threshold level for corrosion of steel in concrete, Corrosion Science, 39, 1001 (1997). Doi: https://doi.org/10.1016/S0010-938X(97)00009-7
- C. Alonso, C. Andrade, X. R. Novoa, M. Izquierdo, and M. C. Perez, Effect of protective oxide scales in the macrogalvanic behaviour of concrete reinforcements, Corrosion Science, 40, 1379 (1998). Doi: https://doi.org/10.1016/S0010-938X(98)00040-7
- T. Maheswaran and J. G. Sanjayan, A semi-closed-form solution for chloride diffusion in concrete with time-varying parameters, Magazine of Concrete Research, 56, 359 (2004). Doi: https://doi.org/10.1680/macr.2004.56.6.359
- D. Trejo and P. J. Monteiro, Corrosion performance of conventional (ASTM A615) and low-alloy (ASTM A706) reinforcing bars embedded in concrete and exposed to chloride environments, Cement and Concrete Research, 35, 562 (2005). Doi: https://doi.org/10.1016/j.cemconres.2004.06.004
- T. P. Hoar, The production and breakdown of the passivity of metals, Corrosion Science, 7, 6 (1967). Doi: https://doi.org/10.1016/S0010-938X(67)80023-4
- B. Pradhan, Performance of TMT and CTD steel bars, OPC and blended cements against chloride induced rebar corrosion in concrete, pp. 116 - 119, Indian Institute of Technology Delhi (2007). http://eprint.iitd.ac.in/bitstream/handle/2074/6207/TH3528.pdf?sequence=2&isAllowed=y
- M. Stern and A. L. Geary, Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves, Journal of the Electrochemical Society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496
- C. Andrade and C. Alonso, Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method, Materials and Structures, 37, 623 (2004). Doi: https://doi.org/10.1007/BF02483292
- Ha-Won Song and Velu Saraswathy, Corrosion Monitoring of Reinforced Concrete Structures - A Review, International Journal of Electrochemical Science, 2, 1 (2007). Doi: https://doi.org/10.1016/S1452-3981(23)17049-0
- S. Feliu, J. A. Gonzalez, S. Feliu, and C. Andrade, Relationship between conductivity of concrete and corrosion of reinforcing bars, British Corrosion Journal, 24, 3 (1989). Doi: https://doi.org/10.1179/000705989798270027
- S. Feliu, J. A. Gonzalez, C. Andrade, and V. Feliu, Onsite determination of the polarization resistance in a reinforced concrete beam, Corrosion, 44, 761 (1988). Doi: https://doi.org/10.5006/1.3584943
- S. Feliu, J. A. Gonzalez, and M. C. Andrade, Confinement of the electrical signal for in situ measurement of polarization resistance in reinforced concrete, Materials Journal, 87, 457 (1990). Doi: https://doi.org/10.14359/1830
- S. Feliu, J. A. Gonzalez, and C. Andrade, Errors in the On-site Measurements of Rebar Corrosion Rates Arising From Signal Un Confinement, Special Publication, 151, 183 (1994). Doi: https://doi.org/10.14359/4383
- J. P. Broomfield, J. Rodriguez, L. M. Ortega, and A. M. Garcia, Proc. Structural Faults and Repair-93, pp. 155 - 164, University of Edinburgh, Scotland (1993).
- A. Sehgal, Y. T. Kho, K. Osseo-Asare, and H. W. Pickering, Comparison of corrosion rate-measuring devices for determining corrosion rate of steel-in-concrete systems, Corrosion, 48, 871 (1992). Doi: https://doi.org/10.5006/1.3315888
- S. G. Millard, D. Law, J. H. Bungey, and J. Cairns, Environmental influences on linear polarisation corrosion rate measurement in reinforced concrete, Ndt & E International, 34, 409 (2001). Doi: https://doi.org/10.1016/S0963-8695(01)00008-1
- J. A. Gonzalez, S. Feliu, C. Andrade, and I. Rodriguez, On-site detection of corrosion in reinforced concrete structures, Materials and Structures, 24, 346 (1991). Doi: https://doi.org/10.1007/BF02472067
- V. Feliu, J. A. Gonzalez, C. Adrade, and S. Feliu, Equivalent circuit for modelling the steel-concrete interface. II. Complications in applying the stern-geary equation to corrosion rate determinations, Corrosion Science, 40, 995 (1998). Doi: https://doi.org/10.1016/S0010-938X(98)00037-7
- S. Ahmad and B. Bhattacharjee, A simple arrangement and procedure for in-situ measurement of corrosion rate of rebar embedded in concrete, Corrosion Science, 37, 781 (1995). Doi: https://doi.org/10.1016/0010-938X(95)80008-5
- G. P. Gu, J. J. Beaudoin, and V. S. Ramachandran, Techniques for corrosion investigation in reinforced concrete Handbook of Analytical Techniques in Concrete Science and Technology, pp. 441-504, William Andrew, New York (2001). Doi: https://doi.org/10.1016/B978-081551437-4.50015-1
- J. Gao, J. Wu, J. Li, and X. Zhao, Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing, Ndt & E International, 44, 202 (2011). Doi: https://doi.org/10.1016/j.ndteint.2010.11.011
- S. Park, B. L. Grisso, D. J. Inman, and C.-B. Yun, MFC-based structural health monitoring using a miniaturized impedance measuring chip for corrosion detection, Research in Nondestructive Evaluation, 18, 139 (2007). Doi: https://doi.org/10.1080/09349840701279937
- J. W. Yang, H. P. Zhu, J. Yu, and D. S. Wang, Experimental study on monitoring steel beam local corrosion based on EMI technique, Applied mechanics and materials, 273, 623 (2013). Doi: https://doi.org/10.4028/www.scientific.net/AMM.273.623
- N. J. Carino, Nondestructive techniques to investigate corrosion status in concrete structures, Journal of Performance of Constructed Facilities, 13, 96 (1999). Doi: http://dx.doi.org/10.1061/(ASCE)0887-3828(1999)13:3(96)
- S. K. Verma, S. S. Bhadauria, and S. Akhtar, Monitoring corrosion of steel bars in reinforced concrete structures, The Scientific World Journal, 2014, Article ID 957904 (2014). Doi: https://doi.org/10.1155/2014/957904
- M. Pour-Ghaz, O. B. Isgor, and P. Ghods, Quantitative interpretation of half-cell potential measurements in concrete structures, Journal of Materials in Civil Engineering, 21, 467 (2009). Doi: https://doi.org/10.1061/(ASCE)0899-1561(2009)21:9(467)
- A. Elshami and B. National, Efficiency of Corrosion Inhibitors Used For Concrete Structures in Aggressive Environment (2021).
- J. Park and M. Jung, Evaluation of the corrosion behavior of reinforced concrete with an inhibitor by electrochemical impedance spectroscopy, Materials, 14, 5508 (2021). Doi: https://doi.org/10.3390/ma14195508
- Y. Almashakbeh, E. Saleh, and N. M. Al-Akhras, Evaluation of Half-Cell Potential Measurements for Reinforced Concrete Corrosion, Coatings, 12, 975 (2022). Doi: https://doi.org/10.3390/coatings12070975
- H. Xu, Z. Chen, B. Xu, and D. Ma, Impact of Low Calcium Fly Ash on Steel Corrosion Rate and Concrete-Steel Interface, The Open Civil Engineering Journal, 6, 1 (2012). Doi: https://doi.org/10.2174/1874149501206010001
- M. Maslehuddin, Rasheeduzzafar, and A. I. Al-Mana, Strength and corrosion resistance of superplasticized concretes, Journal of Materials in Civil Engineering, 4, 108 (1992). Doi: https://doi.org/10.1061/(ASCE)0899-1561(1992)4:1(108)
- M. Criado, D. M. Bastidas, S. Fajardo, A. Fernandez-Jimenez, and J. M. Bastidas, Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars, Cement and Concrete Composites, 33, 644 (2011). Doi: https://doi.org/10.1016/j.cemconcomp.2011.03.014
- H. E. Jamil, A. Shriri, R. Boulif, M. F. Montemor, and M. G. S. Ferreira, Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor, Cement and Concrete Composites, 27, 671 (2005). Doi: https://doi.org/10.1016/j.cemconcomp.2004.09.019
- K. K. Sideris and A. E. Savva, Durability of mixtures containing calcium nitrite based corrosion inhibitor, Cement and Concrete Composites, 27, 277 (2005). Doi: https://doi.org/10.1016/j.cemconcomp.2004.02.016
- K.-Y. Ann, H. S. Jung, H. S. Kim, S. S. Kim, and H. Y. Moon, Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete, Cement and Concrete Research, 36, 530 (2006). Doi: https://doi.org/10.1016/j.cemconres.2005.09.003
- A. A. Gurten, M. Erbil, and K. Kayakirilmaz, Effect of polyvinylpyrrolidone on the corrosion resistance of steel, Cement and Concrete Composites, 27, 802 (2005). Doi: https://doi.org/10.1016/j.cemconcomp.2005.03.002
- W. Morris and M. Vazquez, A migrating corrosion inhibitor evaluated in concrete containing various contents of admixed chlorides, Cement and Concrete Research, 32, 259 (2002). Doi: https://doi.org/10.1016/S0008-8846(01)00669-X
- S. U. Al-Dulaijan, M. Maslehuddin, M. Shameem, M. Ibrahim, and M. Al-Mehthel, Corrosion protection provided by chemical inhibitors to damaged FBEC bars, Construction and Building Materials, 29, 487 (2012). Doi: https://doi.org/10.1016/j.conbuildmat.2011.10.009
- C. Monticelli, A. Frignani, and G. Trabanelli, A study on corrosion inhibitors for concrete application, Cement and Concrete Research, 30, 635 (2000). Doi: https://doi.org/10.1016/S0008-8846(00)00221-0
- O. T. de Rincon, O. Perez, E. Paredes, Y. Caldera, C. Urdaneta, and I. Sandoval, Long-term performance of ZnO as a rebar corrosion inhibitor, Cement and Concrete Composites, 24, 79 (2002). Doi: https://doi.org/10.1016/S0958-9465(01)00029-4
- V. Nachiappan and E. H. Cho, Corrosion of high chromium and conventional steels embedded in concrete, Journal of Performance of Constructed Facilities, 19, 56 (2005). Doi: https://doi.org/10.1061/(ASCE)0887-3828(2005)19:1(56)
- M. Badawi and K. Soudki, Control of corrosion-induced damage in reinforced concrete beams using carbon fiber-reinforced polymer laminates, Journal of Composites for Construction, 9, 195 (2005). Doi: https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(195)
- S. A. Civjan, J. M. LaFave, J. Trybulski, D. Lovett, J. Lima, and D. W. Pfeifer, Effectiveness of corrosion inhibiting admixture combinations in structural concrete, Cement and Concrete Composites, 27, 688 (2005). Doi: https://doi.org/10.1016/j.cemconcomp.2004.07.007
- F. Wombacher, U. Maeder, and B. Marazzani, Aminoalcohol based mixed corrosion inhibitors, Cement and Concrete Composites, 26, 209 (2004). Doi: https://doi.org/10.1016/S0958-9465(03)00040-4
- H.-S. So and S. G. Millard, Assessment of corrosion rate of reinforcing steel in concrete using Galvanostatic pulse transient technique, International Journal of Concrete Structures and Materials, 1, 83 (2007). Doi: https://doi.org/10.4334/IJCSM.2007.1.1.083
- J. Cairns and C. Melville, The effect of concrete surface treatments on electrical measurements of corrosion activity, Construction and Building Materials, 17, 301 (2003). Doi: https://doi.org/10.1016/S0950-0618(03)00028-X
- R. R. Hussain, Underwater half-cell corrosion potential bench mark measurements of corroding steel in concrete influenced by a variety of material science and environmental engineering variables, Measurement, 44, 274 (2011). Doi: https://doi.org/10.1016/j.measurement.2010.10.002
- M. H. Faber and J. D. Sorensen, Indicators for inspection and maintenance planning of concrete structures, Structural Safety, 24, 377 (2002). Doi: https://doi.org/10.1016/S0167-4730(02)00033-4
- W.-L. Lai, T. Kind, M. Stoppel, and H. Wiggenhauser, Measurement of accelerated steel corrosion in concrete using ground-penetrating radar and a modified half-cell potential method, Journal of Infrastructure Systems, 19, 205 (2013). Doi: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000083
- B. Elsener, Macrocell corrosion of steel in concrete-implications for corrosion monitoring, Cement and Concrete Composites, 24, 65 (2002). Doi: https://doi.org/10.1016/S0958-9465(01)00027-0
- H. R. Soleymani and M. E. Ismail, Comparing corrosion measurement methods to assess the corrosion activity of laboratory OPC and HPC concrete specimens, Cement and Concrete Research, 34, 2037 (2004). Doi: https://doi.org/10.1016/j.cemconres.2004.03.008
- A. Poursaee and C. M. Hansson, Potential pitfalls in assessing chloride-induced corrosion of steel in concrete, Cement and Concrete Research, 39, 391 (2009). Doi: https://doi.org/10.1016/j.cemconres.2009.01.015
- X. Xu, E. E. Bishop, S. M. Kennedy, S. A. Simpson, and T. F. Pechacek, Annual healthcare spending attributable to cigarette smoking: an update, American Journal of Preventive Medicine, 48, 326 (2015). Doi: https://doi.org/10.1016/j.amepre.2014.10.012
- M. M. H. Tusher, Microbial Synthesis of Cadmium Selenide Quantum Dots ( CdSe QDs ), Influencing Factors and Applications, Optical and Quantum Electronics, 55, 332 (2023). Doi: https://doi.org/10.1007/s11082-023-04632-z
- A. B. Smith and R. W. Katz, US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases, Natural Hazards, 67, 387 (2013). Doi: https://doi.org/10.1007/s11069-013-0566-5
- U. M. Angst, Challenges and opportunities in corrosion of steel in concrete, Materials and Structures, 51, Article number 4 (2018). Doi: https://doi.org/10.1617/s11527-017-1131-6