DOI QR코드

DOI QR Code

Corrosion of Steel Rebar in Concrete: A Review

  • Akib Jabed (Department of Materials Science and Engineering, Rajshahi University of Engineering and Technology (RUET)) ;
  • Md Mahamud Hasan Tusher (Department of Materials Science and Engineering, Rajshahi University of Engineering and Technology (RUET)) ;
  • Md. Shahidul Islam Shuvo (Department of Materials Science and Engineering, Rajshahi University of Engineering and Technology (RUET)) ;
  • Alisan Imam (Department of Materials Science and Engineering, Rajshahi University of Engineering and Technology (RUET))
  • Received : 2023.02.27
  • Accepted : 2023.04.22
  • Published : 2023.08.30

Abstract

Rebar is embedded in concrete to create reinforced concrete (RC). Rebar carries most of the tensile stress and gives compressively loaded concrete fracture resistance. However, embedded steel corrosion is a significant cause of concern for RC composite structures worldwide. It is one of the biggest threats to concrete structures' longevity. Due to environmental factors, concrete decays and reinforced concrete buildings fail. The type and surface arrangement of the rebar, the cement used in the mortar, the dosing frequency of the concrete, its penetrability, gaps and cracks, humidity, and, most importantly, pollutants and aggressive species all affect rebar corrosion. Either carbonation or chlorides typically cause steel corrosion in concrete. Carbonation occurs when carbon dioxide in the atmosphere combines with calcium within the concrete. This indicates that the pH of the medium is falling, and the steel rebar is corroding. When chlorides pass through concrete to steel, corrosion rates skyrocket. Consideration must be given to concrete moisture. Owing to its excellent resistance, dry concrete has a low steel corrosion rate, whereas extremely wet concrete has a low rate owing to delayed O2 transfer to steel surfaces. This paper examines rebar corrosion causes and mechanisms and describes corrosion evaluation and mitigation methods.

Keywords

References

  1. R. Hussain and T. Ishida, Multivariable Empirical Analysis of Coupled Oxygen and Moisture for Potential and Rate of Quantitative Corrosion in Concrete, Journal of Materials in Civil Engineering, 24, 7 (2012). Doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000474 
  2. D. Bjegovic, D. Mikulic, and D. Sekulic, Proc. 15th World Conference on Non-Destructive Testing, p. 642, Roma, Italy (2000). https://www.ndt.net/article/wcndt00/papers/idn642/idn642.htm 
  3. S. Ahmad, Reinforcement corrosion in concrete structures, its monitoring and service life prediction--a review, Cement and Concrete Composites, 25, 459 (2003). Doi: https://doi.org/10.1016/S0958-9465(02)00086-0 
  4. NACE/ASTM G193-12D, Standard Terminology and Acronyms Relating to Corrosion (2012).
  5. C. M. Hansson, Comments on electrochemical measurements of the rate of corrosion of steel in concrete, Cement and Concrete Research, 14, 574 (1984). Doi: https://doi.org/10.1016/0008-8846(84)90135-2 
  6. L. J. Parrott, A review of carbonation in reinforced concrete, Cement and Concrete Association (1987). 
  7. A. Zaki, M. A. M. Johari, W. M. A. W. Hussin, and Y. Jusman, Experimental Assessment of Rebar Corrosion in Concrete Slab Using Ground Penetrating Radar (GPR), International Journal of Corrosion, 2018, Article ID 5389829 (2018). Doi: https://doi.org/10.1155/2018/5389829 
  8. M. Alhawat, O. H. Zinkaah, and A. Araba, Study of corrosion products induced under different environmental conditions, IOP Conference Series: Materials Science and Engineering, 1090, 012050 (2021). Doi: https://doi.org/10.1088/1757-899x/1090/1/012050 
  9. P. Schiessl, Report of the Technical Committee 60-CSC-RILEM (The International Union of Testing and Research Laboratories for Materials and Structures), Corrosion of Steel in Concrete, London, UK: Chapman and Hall, London (1988). 
  10. P. Claisse, H. Elsayad, and E. Ganjian, Permeability and Pore Volume of Carbonated concrete European concerted action, Final report, Brussels (1997). 
  11. T. Visalakshi and S. Bhalla, Proc. International Conference on Corrosion. CONCOR, New Delhi (2013). 
  12. M. F. Montemor, A. M. P. Simoes, and M. G. S. Ferreira, Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques, Cement and Concrete Composites, 25, 491 (2003). Doi: https://doi.org/10.1016/S0958-9465(02)00089-6 
  13. M. Moreno, W. Morris, M. G. Alvarez, and G. S. Duffo, Corrosion of reinforcing steel in simulated concrete pore solutions: Effect of carbonation and chloride content, Corrosion Science, 46, 2681 (2004). Doi: https://doi.org/10.1016/j.corsci.2004.03.013 
  14. H. A. F. Dehwah, M. Maslehuddin, and S. A. Austin, Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes, Cement and Concrete Composites, 24, 17 (2002). Doi: https://doi.org/10.1016/S0958-9465(01)00023-3 
  15. J. P. Broomfield, Corrosion of steel in concrete: understanding, investigation and repair, 3rd ed., p. 17, Crc Press, Florida (2023). 
  16. S. E. Hussain, A. Al-Musallam, and A. S. Al-Gahtani, Factors affecting threshold chloride for reinforcement corrosion in concrete, Cement and Concrete Research, 25, 1543 (1995). Doi: https://doi.org/10.1016/0008-8846(95)00148-6 
  17. G. K. Glass and N. R. Buenfeld, The presentation of the chloride threshold level for corrosion of steel in concrete, Corrosion Science, 39, 1001 (1997). Doi: https://doi.org/10.1016/S0010-938X(97)00009-7 
  18. C. Alonso, C. Andrade, X. R. Novoa, M. Izquierdo, and M. C. Perez, Effect of protective oxide scales in the macrogalvanic behaviour of concrete reinforcements, Corrosion Science, 40, 1379 (1998). Doi: https://doi.org/10.1016/S0010-938X(98)00040-7 
  19. T. Maheswaran and J. G. Sanjayan, A semi-closed-form solution for chloride diffusion in concrete with time-varying parameters, Magazine of Concrete Research, 56, 359 (2004). Doi: https://doi.org/10.1680/macr.2004.56.6.359 
  20. D. Trejo and P. J. Monteiro, Corrosion performance of conventional (ASTM A615) and low-alloy (ASTM A706) reinforcing bars embedded in concrete and exposed to chloride environments, Cement and Concrete Research, 35, 562 (2005). Doi: https://doi.org/10.1016/j.cemconres.2004.06.004 
  21. T. P. Hoar, The production and breakdown of the passivity of metals, Corrosion Science, 7, 6 (1967). Doi: https://doi.org/10.1016/S0010-938X(67)80023-4 
  22. B. Pradhan, Performance of TMT and CTD steel bars, OPC and blended cements against chloride induced rebar corrosion in concrete, pp. 116 - 119, Indian Institute of Technology Delhi (2007). http://eprint.iitd.ac.in/bitstream/handle/2074/6207/TH3528.pdf?sequence=2&isAllowed=y 
  23. M. Stern and A. L. Geary, Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves, Journal of the Electrochemical Society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496 
  24. C. Andrade and C. Alonso, Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method, Materials and Structures, 37, 623 (2004). Doi: https://doi.org/10.1007/BF02483292 
  25. Ha-Won Song and Velu Saraswathy, Corrosion Monitoring of Reinforced Concrete Structures - A Review, International Journal of Electrochemical Science, 2, 1 (2007). Doi: https://doi.org/10.1016/S1452-3981(23)17049-0 
  26. S. Feliu, J. A. Gonzalez, S. Feliu, and C. Andrade, Relationship between conductivity of concrete and corrosion of reinforcing bars, British Corrosion Journal, 24, 3 (1989). Doi: https://doi.org/10.1179/000705989798270027 
  27. S. Feliu, J. A. Gonzalez, C. Andrade, and V. Feliu, Onsite determination of the polarization resistance in a reinforced concrete beam, Corrosion, 44, 761 (1988). Doi: https://doi.org/10.5006/1.3584943 
  28. S. Feliu, J. A. Gonzalez, and M. C. Andrade, Confinement of the electrical signal for in situ measurement of polarization resistance in reinforced concrete, Materials Journal, 87, 457 (1990). Doi: https://doi.org/10.14359/1830 
  29. S. Feliu, J. A. Gonzalez, and C. Andrade, Errors in the On-site Measurements of Rebar Corrosion Rates Arising From Signal Un Confinement, Special Publication, 151, 183 (1994). Doi: https://doi.org/10.14359/4383 
  30. J. P. Broomfield, J. Rodriguez, L. M. Ortega, and A. M. Garcia, Proc. Structural Faults and Repair-93, pp. 155 - 164, University of Edinburgh, Scotland (1993). 
  31. A. Sehgal, Y. T. Kho, K. Osseo-Asare, and H. W. Pickering, Comparison of corrosion rate-measuring devices for determining corrosion rate of steel-in-concrete systems, Corrosion, 48, 871 (1992). Doi: https://doi.org/10.5006/1.3315888 
  32. S. G. Millard, D. Law, J. H. Bungey, and J. Cairns, Environmental influences on linear polarisation corrosion rate measurement in reinforced concrete, Ndt & E International, 34, 409 (2001). Doi: https://doi.org/10.1016/S0963-8695(01)00008-1 
  33. J. A. Gonzalez, S. Feliu, C. Andrade, and I. Rodriguez, On-site detection of corrosion in reinforced concrete structures, Materials and Structures, 24, 346 (1991). Doi: https://doi.org/10.1007/BF02472067 
  34. V. Feliu, J. A. Gonzalez, C. Adrade, and S. Feliu, Equivalent circuit for modelling the steel-concrete interface. II. Complications in applying the stern-geary equation to corrosion rate determinations, Corrosion Science, 40, 995 (1998). Doi: https://doi.org/10.1016/S0010-938X(98)00037-7 
  35. S. Ahmad and B. Bhattacharjee, A simple arrangement and procedure for in-situ measurement of corrosion rate of rebar embedded in concrete, Corrosion Science, 37, 781 (1995). Doi: https://doi.org/10.1016/0010-938X(95)80008-5 
  36. G. P. Gu, J. J. Beaudoin, and V. S. Ramachandran, Techniques for corrosion investigation in reinforced concrete Handbook of Analytical Techniques in Concrete Science and Technology, pp. 441-504, William Andrew, New York (2001). Doi: https://doi.org/10.1016/B978-081551437-4.50015-1 
  37. J. Gao, J. Wu, J. Li, and X. Zhao, Monitoring of corrosion in reinforced concrete structure using Bragg grating sensing, Ndt & E International, 44, 202 (2011). Doi: https://doi.org/10.1016/j.ndteint.2010.11.011 
  38. S. Park, B. L. Grisso, D. J. Inman, and C.-B. Yun, MFC-based structural health monitoring using a miniaturized impedance measuring chip for corrosion detection, Research in Nondestructive Evaluation, 18, 139 (2007). Doi: https://doi.org/10.1080/09349840701279937 
  39. J. W. Yang, H. P. Zhu, J. Yu, and D. S. Wang, Experimental study on monitoring steel beam local corrosion based on EMI technique, Applied mechanics and materials, 273, 623 (2013). Doi: https://doi.org/10.4028/www.scientific.net/AMM.273.623 
  40. N. J. Carino, Nondestructive techniques to investigate corrosion status in concrete structures, Journal of Performance of Constructed Facilities, 13, 96 (1999). Doi: http://dx.doi.org/10.1061/(ASCE)0887-3828(1999)13:3(96) 
  41. S. K. Verma, S. S. Bhadauria, and S. Akhtar, Monitoring corrosion of steel bars in reinforced concrete structures, The Scientific World Journal, 2014, Article ID 957904 (2014). Doi: https://doi.org/10.1155/2014/957904 
  42. M. Pour-Ghaz, O. B. Isgor, and P. Ghods, Quantitative interpretation of half-cell potential measurements in concrete structures, Journal of Materials in Civil Engineering, 21, 467 (2009). Doi: https://doi.org/10.1061/(ASCE)0899-1561(2009)21:9(467) 
  43. A. Elshami and B. National, Efficiency of Corrosion Inhibitors Used For Concrete Structures in Aggressive Environment (2021). 
  44. J. Park and M. Jung, Evaluation of the corrosion behavior of reinforced concrete with an inhibitor by electrochemical impedance spectroscopy, Materials, 14, 5508 (2021). Doi: https://doi.org/10.3390/ma14195508 
  45. Y. Almashakbeh, E. Saleh, and N. M. Al-Akhras, Evaluation of Half-Cell Potential Measurements for Reinforced Concrete Corrosion, Coatings, 12, 975 (2022). Doi: https://doi.org/10.3390/coatings12070975 
  46. H. Xu, Z. Chen, B. Xu, and D. Ma, Impact of Low Calcium Fly Ash on Steel Corrosion Rate and Concrete-Steel Interface, The Open Civil Engineering Journal, 6, 1 (2012). Doi: https://doi.org/10.2174/1874149501206010001 
  47. M. Maslehuddin, Rasheeduzzafar, and A. I. Al-Mana, Strength and corrosion resistance of superplasticized concretes, Journal of Materials in Civil Engineering, 4, 108 (1992). Doi: https://doi.org/10.1061/(ASCE)0899-1561(1992)4:1(108) 
  48. M. Criado, D. M. Bastidas, S. Fajardo, A. Fernandez-Jimenez, and J. M. Bastidas, Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars, Cement and Concrete Composites, 33, 644 (2011). Doi: https://doi.org/10.1016/j.cemconcomp.2011.03.014 
  49. H. E. Jamil, A. Shriri, R. Boulif, M. F. Montemor, and M. G. S. Ferreira, Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor, Cement and Concrete Composites, 27, 671 (2005). Doi: https://doi.org/10.1016/j.cemconcomp.2004.09.019 
  50. K. K. Sideris and A. E. Savva, Durability of mixtures containing calcium nitrite based corrosion inhibitor, Cement and Concrete Composites, 27, 277 (2005). Doi: https://doi.org/10.1016/j.cemconcomp.2004.02.016 
  51. K.-Y. Ann, H. S. Jung, H. S. Kim, S. S. Kim, and H. Y. Moon, Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete, Cement and Concrete Research, 36, 530 (2006). Doi: https://doi.org/10.1016/j.cemconres.2005.09.003 
  52. A. A. Gurten, M. Erbil, and K. Kayakirilmaz, Effect of polyvinylpyrrolidone on the corrosion resistance of steel, Cement and Concrete Composites, 27, 802 (2005). Doi: https://doi.org/10.1016/j.cemconcomp.2005.03.002 
  53. W. Morris and M. Vazquez, A migrating corrosion inhibitor evaluated in concrete containing various contents of admixed chlorides, Cement and Concrete Research, 32, 259 (2002). Doi: https://doi.org/10.1016/S0008-8846(01)00669-X 
  54. S. U. Al-Dulaijan, M. Maslehuddin, M. Shameem, M. Ibrahim, and M. Al-Mehthel, Corrosion protection provided by chemical inhibitors to damaged FBEC bars, Construction and Building Materials, 29, 487 (2012). Doi: https://doi.org/10.1016/j.conbuildmat.2011.10.009 
  55. C. Monticelli, A. Frignani, and G. Trabanelli, A study on corrosion inhibitors for concrete application, Cement and Concrete Research, 30, 635 (2000). Doi: https://doi.org/10.1016/S0008-8846(00)00221-0 
  56. O. T. de Rincon, O. Perez, E. Paredes, Y. Caldera, C. Urdaneta, and I. Sandoval, Long-term performance of ZnO as a rebar corrosion inhibitor, Cement and Concrete Composites, 24, 79 (2002). Doi: https://doi.org/10.1016/S0958-9465(01)00029-4 
  57. V. Nachiappan and E. H. Cho, Corrosion of high chromium and conventional steels embedded in concrete, Journal of Performance of Constructed Facilities, 19, 56 (2005). Doi: https://doi.org/10.1061/(ASCE)0887-3828(2005)19:1(56) 
  58. M. Badawi and K. Soudki, Control of corrosion-induced damage in reinforced concrete beams using carbon fiber-reinforced polymer laminates, Journal of Composites for Construction, 9, 195 (2005). Doi: https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(195) 
  59. S. A. Civjan, J. M. LaFave, J. Trybulski, D. Lovett, J. Lima, and D. W. Pfeifer, Effectiveness of corrosion inhibiting admixture combinations in structural concrete, Cement and Concrete Composites, 27, 688 (2005). Doi: https://doi.org/10.1016/j.cemconcomp.2004.07.007 
  60. F. Wombacher, U. Maeder, and B. Marazzani, Aminoalcohol based mixed corrosion inhibitors, Cement and Concrete Composites, 26, 209 (2004). Doi: https://doi.org/10.1016/S0958-9465(03)00040-4 
  61. H.-S. So and S. G. Millard, Assessment of corrosion rate of reinforcing steel in concrete using Galvanostatic pulse transient technique, International Journal of Concrete Structures and Materials, 1, 83 (2007). Doi: https://doi.org/10.4334/IJCSM.2007.1.1.083 
  62. J. Cairns and C. Melville, The effect of concrete surface treatments on electrical measurements of corrosion activity, Construction and Building Materials, 17, 301 (2003). Doi: https://doi.org/10.1016/S0950-0618(03)00028-X 
  63. R. R. Hussain, Underwater half-cell corrosion potential bench mark measurements of corroding steel in concrete influenced by a variety of material science and environmental engineering variables, Measurement, 44, 274 (2011). Doi: https://doi.org/10.1016/j.measurement.2010.10.002 
  64. M. H. Faber and J. D. Sorensen, Indicators for inspection and maintenance planning of concrete structures, Structural Safety, 24, 377 (2002). Doi: https://doi.org/10.1016/S0167-4730(02)00033-4 
  65. W.-L. Lai, T. Kind, M. Stoppel, and H. Wiggenhauser, Measurement of accelerated steel corrosion in concrete using ground-penetrating radar and a modified half-cell potential method, Journal of Infrastructure Systems, 19, 205 (2013). Doi: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000083 
  66. B. Elsener, Macrocell corrosion of steel in concrete-implications for corrosion monitoring, Cement and Concrete Composites, 24, 65 (2002). Doi: https://doi.org/10.1016/S0958-9465(01)00027-0 
  67. H. R. Soleymani and M. E. Ismail, Comparing corrosion measurement methods to assess the corrosion activity of laboratory OPC and HPC concrete specimens, Cement and Concrete Research, 34, 2037 (2004). Doi: https://doi.org/10.1016/j.cemconres.2004.03.008 
  68. A. Poursaee and C. M. Hansson, Potential pitfalls in assessing chloride-induced corrosion of steel in concrete, Cement and Concrete Research, 39, 391 (2009). Doi: https://doi.org/10.1016/j.cemconres.2009.01.015 
  69. X. Xu, E. E. Bishop, S. M. Kennedy, S. A. Simpson, and T. F. Pechacek, Annual healthcare spending attributable to cigarette smoking: an update, American Journal of Preventive Medicine, 48, 326 (2015). Doi: https://doi.org/10.1016/j.amepre.2014.10.012 
  70. M. M. H. Tusher, Microbial Synthesis of Cadmium Selenide Quantum Dots ( CdSe QDs ), Influencing Factors and Applications, Optical and Quantum Electronics, 55, 332 (2023). Doi: https://doi.org/10.1007/s11082-023-04632-z 
  71. A. B. Smith and R. W. Katz, US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases, Natural Hazards, 67, 387 (2013). Doi: https://doi.org/10.1007/s11069-013-0566-5 
  72. U. M. Angst, Challenges and opportunities in corrosion of steel in concrete, Materials and Structures, 51, Article number 4 (2018). Doi: https://doi.org/10.1617/s11527-017-1131-6