DOI QR코드

DOI QR Code

Effects of Wollastonite Coating on Surface Characteristics of Plasma Electrolytic Oxidized Ti-6Al-4V Alloy

플라즈마 전해 산화처리된 Ti-6Al-4V합금의 표면특성에 미치는 울라스토나이트 코팅효과

  • Jaeeun Go (Dept. of Materials Science and Engineering, Chosun University) ;
  • Jong Kook Lee (Dept. of Materials Science and Engineering, Chosun University) ;
  • Han Cheol Choe (College of Dentistry, Chosun University)
  • 고재은 (조선대학교 신소재공학과) ;
  • 이종국 (조선대학교 신소재공학과) ;
  • 최한철 (조선대학교 치과대학)
  • Received : 2023.08.05
  • Accepted : 2023.08.11
  • Published : 2023.08.30

Abstract

Ti-6Al-4V alloys are mainly used as dental materials due to their excellent biocompatibility, corrosion resistance, and chemical stability. However, they have a low bioactivity with bioinertness in the body. Therefore, they could not directly bond with human bone. To improve their applications, their bone bonding ability and bone formation capacity should be improved. Thus, the objective of this study was to improve the bioinert surface of titanium alloy substrate to show bioactive characteristics by performing surface modification using wollastonite powder. Commercial bioactive wollastonite powder was successfully deposited onto Ti-6Al-4V alloy using a room temperature spray process. It was found that wollastonite-coated layer showed homogeneous microstructure and uniform thickness. Corrosion resistance of Ti-6Al-4V alloy was also improved by plasma electrolytic oxidation treatment. Its wettability and bioactivity were also greatly increased by wollastonite coating. Results of this study indicate that both plasma electrolytic oxidation treatment and wollastonite coating by room temperature spray process could be used to improve surface bioactivity of Ti-6Al-4V alloy substrate.

Keywords

Acknowledgement

이 연구는 한국연구재단의 기초연구실지원사업(과제번호: 2021R1A4A1030243)과 중견연구지원사업(과제번호:2023R1A2C1005748)으로 수행되었음.

References

  1. K. Hayashi, T. Inadome, H. Tsumura, T. Mashima and Y. Sugioka, Bone-implant interface mechanics of in vivo bio-inert ceramics, Biomaterials, 14, 1173 (1993). Doi: https://doi.org/10.1016/0142-9612(93)90163-V
  2. Q. Fu, Y. Hong, X. Liu, H. Fan and X. Zhang, A hierarchically graded bioactive scaffold bonded to titanium substrates for attachment to bone, Biomaterials, 32, 7333 (2011). Doi: https://doi.org/10.1016/j.biomaterials.2011.06.051
  3. H. Sato, K. Yamada, G. Pezzotti, M. Nawa and S. Ban, Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment, Dental Materials Journal, 27, 408 (2008). Doi: https://doi.org/10.4012/dmj.27.408
  4. R. Gruber, E. Hedbom, D. D. Bosshardt, R. Heuberger and D. Buser, Acid and alkali etching of grit blasted zirconia: Impact on adhesion and osteogenic differentiation of MG63 cells in vitro, Dental Materials Journal, 31, 1097 (2012). Doi: https://doi.org/10.4012/dmj.2012-107
  5. H. C. Lai, L. F. Zhuang, Z. Y. Zhang and X. Liu, Evaluation of soft-tissue alteration around implant-supported single-tooth restoration in the anterior maxilla: the pink esthetic score, Clinical Oral Implants Research, 20, 247 (2009). Doi: https://doi.org/10.1111/j.1600-0501.2008.01522.x
  6. M. Khodaei, M. Meratian, O. Savabi, M. Fathi and H. Ghomi, The side effects of surface modification of porous titanium implant using hydrogen peroxide: Mechanical properties aspects, Materials Letters, 178, 201 (2016). Doi: https://doi.org/10.1016/j.matlet.2016.04.210
  7. D. Chopra, A. Jayasree, T. Guo, K. Gulati and S. Ivanovski, Advancing dental implants: Bioactive and therapeutic modifications of zirconia, Bioactive Materials, 13, 161 (2022). Doi: https://doi.org/10.1016/j.bioactmat.2021.10.010
  8. E. Pecheva, L. Pramatarova, D. Fingarova, T. Hikov, I. Dineva, Z. Karagyozova and S. Stavrev, Advanced materials for metal implant coatings, Journal of Optoelectronics and Advanced MaterialsI,. 11, 1323 (2009).
  9. S. Overgaard, Calcium phosphate coatings for fixation of bone implants: Evaluated mechanically and histologically by stereological methods, Acta Orthopaedica Scandinavica, 71, 1 (2000). Doi: https://doi.org/10.1080/000164700753759574
  10. M. S. Zafar, I. Farooq, M. Awais, S. Najeeb, Z. Khurshid and S. Zohaib, G. Kaur, Chapter 11 - Bioactive surface coatings for enhancing osseointegration of dental implants, Ed., (Woodhead Publishing, United Kingdom, 2019) p. 313, Doi: https://doi.org/10.1016/B978-0-08-102196-5.00011-2
  11. R. Z. LeGeros and J. P. LeGeros, Calcium phosphate bio-ceramics: Past, Present and Future, Key Engineering Materials, 240, 3 (2003). Doi: https://doi.org/10.4028/www.scientific.net/KEM.240-242.3
  12. A. Carrado and N. Viart, Nanocrystalline spin coated sol-gel hydroxyapatite thin films on Ti substrate: Towards potential applications for implants, Solid State Sciemces, 12, 1047 (2010). Doi: https://doi.org/10.1016/j.solidstatesciences.2010.04.014
  13. W. Suchanek, and M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, Journal of Materials Research, 13, 94 (1998). Doi: https://doi.org/10.1557/JMR.1998.0015
  14. J. Go and J. K. Lee, Improvement of bioactivity on zirconia substrate by wollastonite slurry/spin coating, Journal of Ceramic Processing Research, 23, 292 (2022). Doi: https://doi.org/10.36410/jcpr.2022.23.3.292
  15. M. Navarro, A. Michiardi, O. Castano, J. A. Planell, Biomaterials in orthopaedics, Journal of The Royal Society Interface, 5, 1137 (2008). Doi: https://doi.org/10.1098/rsif.2008.0151
  16. J. Xie, X. Yang, H. Shao, J. Ye, Y. He, J. Fu, C. Gao and Z. Gou, Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping, Journal of the mechanical behavior of biomedical materials, 54, 60 (2016). Doi: https://doi.org/10.1016/j.jmbbm.2015.09.012
  17. H. C. Li, D. G. Wang and C. Z. Chen, Effect of sodium oxide and magnesia on structure, in vitro bioactivity and degradability of wollastonite, Materials Letters, 135, 237 (2014). Doi: https://doi.org/10.1016/j.matlet.2014.07.177
  18. S. H. Ahn, D. S. Seo and J. K. Lee, Fabrication of dense β-wollastonite bioceramics by MgSiO3 addition, Journal of Ceramic Processing Research, 16, 548 (2015). Doi: https://doi.org/10.36410/jcpr.2015.16.5.548
  19. R. Garvie and P. Nicholson, Phase analysis in zirconia systems, Journal of the American Ceramic Society, 55, 303 (1972). Doi: https://doi.org/10.1111/j.1151-2916.1972.tb11290.x
  20. S. G. Lim and H. C. Choe, Bioactive apatite formation on PEO-treated Ti-6Al-4V alloy after 3rd anodic titanium oxidation, Applied Surface Science, 484, 365 (2019). Doi: https://doi.org/10.1016/j.apsusc.2019.04.096
  21. J. I. Kang, M. K. Son, H. C. Choe and W.A. Brantley, Bone-like apatite formation on manganese-hydroxyapatite coating formed on Ti-6Al-4V alloy by plasma electrolytic oxidation, Thin Solid Films, 620, 126 (2016). Doi: https://doi.org/10.1016/j.tsf.2016.07.088
  22. Y. H. Yun and J. K. Lee, Wollastonite coating on zirconia substrate by room temperature spray processing, Journal of the Korean Ceramic Society. 59, 393 (2022). Doi: https://doi.org/10.1007/s43207-021-00180-y
  23. J. K. Lee, S. Eum, J. Kim, K. H. Hwang, Fabrication of wollastonite coatings on zirconia by room temperature spray process, Journal of Nanoscience and Nanotechnology, 16, 1996 (2016). Doi: https://doi.org/10.1166/jnn.2016.11963
  24. J. Akedo, Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices, Journal of Thermal Spray Technology, 17, 181 (2008). Doi: https://doi.org/10.1007/s11666-008-9163-7
  25. H. C. Choe, J. U. Kim, S. K. Park, Effects of Mo content on surface characteristics of dental Ni-Ti alloys, Corrosion Science and Technology, 22, 64 (2023). Doi: https://doi.org/10.14773/cst.2023.22.1.64
  26. Y. S Kim, Synergistic effect of nitrogen and molybdenum on localized corrosion of stainless steels, Corrosion Science and Technology, 9, 20 (2010). Doi: https://doi.org/10.14773/cst.2010.9.1.020