References
- Y. Hung, K. M. El-Khatib, and H. Tawfik, Testing and evaluation of aluminum coated bipolar plates of pem fuel cells operating at 70 ℃, Journal of Power Sources, 163, 509 (2006). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.013
- S. Y. Cha and J. B. Lee, Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods, Corrosion Science and Technology, 15, 92 (2016). Doi: https://doi.org/10.14773/cst.2016.15.2.92
- Y. Luo, Y. Wu, B. Li, T. Mo, Y. Li, S. P. Feng, J. Qu, and P. K. Chu, Development and application of fuel cells in the automobile industry, Journal of Energy Storage, 42, 103124 (2021). Doi: https://doi.org/10.1016/j.est.2021.103124
- Y. Choi and C. Jeong, Growth Behavior and Corrosion Damage of Oxide Film According to Anodizing Time of Aluminum 1050 Alloy, Corrosion Science and Technology, 21, 282 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.282
- J. Woodtli and R. Kieselbach, Damage due to hydrogen embrittlement and stress corrosion cracking, Engineering Failure Analysis, 7, 427 (2000). Doi: https://doi.org/10.1016/S1350-6307(99)00033-3
- S. G. Pantelakis, P. G. Daglaras, and C. A. Apostolopoulos, Tensile and energy density properties of 2024, 6013, 8090 and 2091 aircraft aluminum alloy after corrosion exposure, Theoretical and Applied Fracture Mechanics, 33, 117 (2000). Doi: https://doi.org/10.1016/S0167-8442(00)00007-0
- W. K. Jang, S. S. Kim, and K. S. Shin, Effect of cathodic hydrogen charging on mechanical properties of Al 8090, Scripta Materialia, 40, 503 (1999). Doi: https://doi.org/10.1016/S1359-6462(98)00472-2
- E. Serra, P. J. Kelly, D. K. Ross, and R. D. Arnell, Alumina sputtered on MANET as an effective deuterium permeation barrier, Journal of Nuclear Materials, 257, 194 (1998). Doi: https://doi.org/10.1016/S0022-3115(98)00473-5
- S. W. Cai, Y. Zong, T. S. Hua, and R. G. Song, Study on the inhibition of hydrogen embrittlement of 7050 aluminum alloy in humid air by MAO coating, Anti-Corrosion Methods and Materials, 67, 387 (2020). Doi: https://doi.org/10.1108/ACMM-12-2019-2237
- Y. Chen, S. Zhao, H. Ma, H. Wang, L. Hua, and S. Fu, Analysis of Hydrogen Embrittlement on Aluminum Alloys for Vehicle-Mounted Hydrogen Storage Tanks: A Review, Metals, 11, 1303 (2021). Doi: https://doi.org/10.3390/met11081303
- H. K. Hwang, D. H. Shin, S. J. Kim, Investigation on hydrogen embrittlement characteristics by slow strain rate test of aluminum alloy for hydrogen valve of hydrogen fuel cell vehicle, Corrosion Science and Technology, 21, 503 (2022). Doi: https://doi.org/10.14773/cst.2022.21.6.503
- Military Specification MIL-A-8625F, Anodic Coatings for Aluminum and Aluminum Alloys, Naval Air Warfare Center Aircraft Division Lakehurst, Lakehurs, NJ (1993).
- M. Remesova, S. Tkachenko, D. Kvarda, I. Rocnakova, B. Gollas, M. Menelaou, L. Celko, and J. Kaiser, Effects of anodizing conditions and the addition of Al2O3/PTFE particles on the microstructure and the mechanical properties of porous anodic coatings on the AA1050 aluminium alloy, Applied Surface Science, 513, 145780 (2020). Doi: https://doi.org/10.1016/j.apsusc.2020.145780
- J. Qin and M. Curioni, Transitions in porous oxide morphologies on AA2024-T3 anodized under high currents and low temperatures: Impact on corrosion behaviour, Electrochimica Acta, 428, 140927 (2022). Doi: https://doi.org/10.1016/j.electacta.2022.140927
- N. C. T. Martins, T. Moura e Silva, M. F. Montemor, J. C. S. Fernandes, and M. G. S. Ferreira, Electrodeposition and characterization of polypyrrole films on aluminium alloy 6061-T6, Electrochimica Acta, 53, 4754 (2008). Doi: https://doi.org/10.1016/j.electacta.2008.01.059
- J. Oh and C. V. Thompson, The role of electric field in pore formation during aluminum anodization, Electrochimica Acta, 56, 4044 (2011). Doi: https://doi.org/10.1016/j.electacta.2011.02.002
- S. H. Mohitfar, S. Mahdavi, M. Etminanfar, and J. Khalil-Allafi, Characteristics and tribological behavior of the hard anodized 6061-T6 Al alloy, Journal of Alloys and Compounds, 842, 1 (2020). Doi: https://doi.org/10.1016/j.jallcom.2020.155988
- I. C. Chung, C. K. Chung, and Y. K. Su, Effect of current density and concentration on microstructure and corrosion behavior of 6061 Al alloy in sulfuric acid, Surface and Coatings Technology, 313, 299 (2017). Doi: https://doi.org/10.1016/j.surfcoat.2017.01.114
- F. C. Garcia Rueda and J. T. Gonzalez, Electrochemical polymerization of polypyrrole coatings on hard-anodized coatings of the aluminum alloy 2024-T3, Electrochimica Acta, 347, 136272 (2020). Doi: https://doi.org/10.1016/j.electacta.2020.136272
- N. Tsyntsaru, B. Kavas, J. Sort, M. Urgen, and J. P. Celis, Mechanical and frictional behaviour of nano-porous anodized aluminium, Materials Chemistry and Physics, 148, 887 (2014). Doi: https://doi.org/10.1016/j.matchemphys.2014.08.066
- J. S. Zamarripa-Pina, H. M. Hdz-Garcia, J. C. Diaz-Guillen, J. A. Aguilar-Martinez, E. E. Granda-Gutierrez, and M. A. Gonzalez, Increase in hardness and chloride corrosion resistance of 6061 aluminum alloy by pulsed plasma nitriding, International Journal of Emerging Technology and Advanced Engineering, 3, 348 (2013). http://www.ijetae.com/files/Volume3Issue6/IJETAE_0613_59.pdf
- Y. K. Shim, Y. K. Kim, K. H. Lee, and S. Han, The properties of AlN prepared by plasma nitriding and plasma source ion implantation techniques, Surface and Coatings Technology, 131, 345 (2000). Doi: https://doi.org/10.1016/S0257-8972(00)00807-0
- K. Taherkhani and M. Soltanieh, Composite coatings created by new method of active screen plasma nitriding on aluminium alloy 6061, Journal of Alloys and Compounds, 741, 1247 (2018). Doi: https://doi.org/10.1016/j.jallcom.2017.12.360
- C. A. Figueroa and F. Alvarez, On the hydrogen etching mechanism in plasma nitriding of metals, Applied Surface Science, 253, 1806 (2006). Doi: https://doi.org/10.1016/j.apsusc.2006.03.015
- N. Renevier, T. Czerwiec, A. Billard, J. Von Stebut, and H. Michel, A way to decrease the nitriding temperature of aluminium: The low-pressure arc-assisted nitriding process, Surface and Coatings Technology, 116-119, 380 (1999). Doi: https://doi.org/10.1016/S0257-8972(99)00209-1
- P. Nageswara Rao, D. Singh, and R. Jayaganthan, Effect of annealing on microstructure and mechanical properties of Al 6061 alloy processed by cryorolling, Materials Science and Technology, 29, 76 (2013). Doi: https://doi.org/10.1179/1743284712Y.0000000041
- M. Okumiya, Y. Tsunekawa, and T. Murayama, Surface modification of aluminum using ion nitriding and fluidized bed, Surface and Coatings Technology, 142-144, 235 (2001). Doi: https://doi.org/10.1016/S0257-8972(01)01151-3
- E. I. Meletis and S. Yan, Formation of aluminum nitride by intensified plasma ion nitriding, Journal of Vacuum Science and Technology A, 9, 2279 (1991). Doi: https://doi.org/10.1116/1.577309
- R. A. Youngman and J. H. Harris, Luminescence studies of oxygen-related defects in aluminum nitride, Electronic structure of Ceramics, 73, 3238 (1990). Doi: https://doi.org/10.1111/j.1151-2916.1990.tb06444.x
- L. Rosenberger, R. Baird, E. McCullen, G. Auner, and G. Shreve, XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surface and Interface Analysis, 40, 1254 (2008). Doi: https://doi.org/10.1002/sia.2874
- W. Y. Chang, T. H. Fang, Z. W. Chiu, Y. J. Hsiao, and L. W. Ji, Nanomechanical properties of array TiO2 nanotubes, Microporous and Mesoporous Materials, 145, 87 (2011). Doi: https://doi.org/10.1016/j.micromeso.2011.04.035
- T. Kikuchi, A. Takenaga, S. Natsui, and R. O. Suzuki, Advanced hard anodic alumina coatings via etidronic acid anodizing, Surface and Coatings Technology, 326, Part A, 72 (2017). Doi: https://doi.org/10.1016/j.surfcoat.2017.07.043
- M. Shahzad, M. Chaussumier, R. Chieragatti, C. Mabru, and F. Rezai-Aria, Influence of anodizing process on fatigue life of machined aluminium alloy, Procedia Engineering, 2, 1015 (2010). Doi: https://doi.org/10.1016/j.proeng.2010.03.110
- R. J. Anton and G. Subhash, Dynamic Vickers indentation of brittle materials, Wear, 239, 27 (2000). Doi: https://doi.org/10.1016/S0043-1648(99)00364-6
- Y. Yamada-Takamura, F. Koch, H. Maier, and H. Bolt, Hydrogen permeation barrier performance characterization of vapor deposited amorphous aluminum oxide films using coloration of tungsten oxide, Surface and Coatings Technology, 153, 114 (2002). Doi: https://doi.org/10.1016/S0257-8972(01)01697-8
- E. Serra, A. C. Bini, G. Cosoli, and L. Pilloni, Hydrogen permeation measurements on alumina, Journal of the American Ceramic Society, 88, 15 (2005). Doi: https://doi.org/10.1111/j.1551-2916.2004.00003.x
- W. Song, J. Du, Y. Xu, and B. Long, A study of hydrogen permeation in aluminum alloy treated by various oxidation processes, Journal of Nuclear Materials, 246, 139 (1997). Doi: https://doi.org/10.1016/S0022-3115(97)00146-3
- M. Asadipoor, A. Pourkamali Anaraki, J. Kadkhodapour, S. M. H. Sharifi, and A. Barnoush, Macro- and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending test, Materials Science & Engineering A, 772, 138762 (2020). Doi: https://doi.org/10.1016/j.msea.2019.138762
- J. Wang, Q. Li, Q. Y. Xiang, and J. L. Cao, Performances of AlN coatings as hydrogen isotopes permeation barriers, Fusion Engineering and Design, 102, 94 (2016). Doi: https://doi.org/10.1016/j.fusengdes.2015.11.043
- A. Wasy, G. Balakrishnan, S. H. Lee, J. K. Kim, D. G. Kim, T. G. Kim and J. I. Song, Argon plasma treatment on metal substrates and effects on diamond-like carbon (DLC) coating properties, Crystal Research and Technology, 49, 55 (2014). Doi: https://doi.org/10.1002/crat.201300171
- H. S. Shin, J. Yeo, and U. B. Baek, Influence of specimen surface roughness on hydrogen embrittlement induced in austenitic steels during in-situ small punch testing in high-pressure hydrogen environments, Metals, 11, 1579 (2021). Doi: https://doi.org/10.3390/met11101579
- J. W. Kim, D. Hall, H. Yan, Y. Shi, S. Joseph, S. Fearn, R. J. Chater, D. Dye, C. C. Tasan, Roughening improves hydrogen embrittlement resistance of Ti-6Al-4V, Acta Materialia, 220, 117304 (2021). Doi: https://doi.org/10.1016/j.actamat.2021.117304
- Y. Fukumoto, New constructional steels and structural stability, Engineering Structures, 18, 786 (1996). Doi: https://doi.org/10.1016/0141-0296(96)00008-9
- J. Michalska, B. Chmiela, J. Labanowski, and W. Simka, Hydrogen damage in superaustenitic 904L stainless steels, Journal of Materials Engineering and Performance, 23, 2760 (2014). Doi: https://doi.org/10.1007/s11665-014-1044-2
- W. M. Mook, J. D. Nowak, C. R. Perrey, C. B. Carter, R. Mukherjee, S. L. Girshick, P. H. McMurry, and W. W. Gerberich, Compressive stress effects on nanoparticle modulus and fracture, Physical Review B, 75, 1 (2007). Doi: https://doi.org/10.1103/PhysRevB.75.214112
- W. W. Gerberich, J. Michler, W. M. Mook, R. Ghisleni, F. Ostlund, D. D. Stauffer, and R. Ballarini, Scale effects for strength, ductility, and toughness in "brittle" materials, Journal of Materials Research, 24, 898 (2009). Doi: https://doi.org/10.1557/jmr.2009.0143