DOI QR코드

DOI QR Code

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network

고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가

  • Se-Hyeok Lee (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Changuk Mun (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Sangki Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jeong-Rae Cho (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Junho Song (Department of Civil and Environmental Engineering, Seoul National University)
  • 이세혁 (한국건설기술연구원 구조연구본부) ;
  • 문창욱 (서울대학교 건설환경공학부 ) ;
  • 박상기 (한국건설기술연구원 구조연구본부) ;
  • 조정래 (한국건설기술연구원 구조연구본부 ) ;
  • 송준호 (서울대학교 건설환경공학부 )
  • Received : 2023.08.01
  • Accepted : 2023.08.09
  • Published : 2023.08.31

Abstract

Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.

원자력발전소 지진 확률론적 안전성 평가인 PSA(Probabilistic Safety Assessment)는 오랜 기간에 걸쳐 확고히 구축되어 왔다. 반면에 다양한 공정 기반의 산업시설물의 경우 화재, 폭발, 확산(유출) 재난에 대해 주로 연구되어 왔으며, 지진에 대해서는 상대적으로 연구가 미미하였다. 하지만, 플랜트 설계 당시와 달리 해당 부지가 지진 영향권에 들어갈 경우 지진 PSA 수행은 필수적이다. 지진 PSA를 수행하기 위해서는 확률론적 지진 재해도 해석(Probabilistic Seismic Hazard Analysis), 사건수목 해석(Event Tree Analysis), 고장수목 해석(Fault Tree Analysis), 취약도 곡선 등을 필요로 한다. 원자력 발전소의 경우 노심 손상 방지라는 최우선 목표에 따라 많은 사고 시나리오 분석을 통해 사건수목이 구축되었지만, 산업시설물의 경우 공정의 다양성과 최우선 손상 방지 핵심설비의 부재로 인해 일반적인 사건수목 구축이 어렵다. 따라서, 본 연구에서는 산업시설물 지진 PSA를 수행하기 위해 고장수목을 바탕으로 확률론적 시각도구인 베이지안 네트워크(Bayesian Network, BN)로 변환하여 리스크를 평가하는 방법을 제안한다. 제안된 방법을 이용하여 임의로 생성된 가스플랜트 Plot Plan에 대해 최종 BN을 구축하고, 다양한 사건 경우에 대한 효용성있는 의사결정과정을 보임으로써 그 우수성을 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호: RS-2021-KA163162).

References

  1. Abbiati, G., Brocardo, M., Filippo, R., Stojadinovic, B., Bursi, O.S. (2021) Seismic Fragility Analysis of a Coupled Tank-Piping System based on Artificial Ground Motions and Surrogate Modeling, J. Loss Prev. Process Ind., 72(2021), p. 104575.
  2. Barber, D. (2012) Bayesian Reasoning and Machine Learning, Cambridge: Cambridge University Press, p.697.
  3. BayesFusion, LLC (2023) GeNie (Version 4.0.3005) [Computer Software], Released on Jun 5, 2023, from www.bayesfusion.com.
  4. Bensi, M., Der Kiureghian, A., Straub, D. (2011) A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support, Pacific Earthquake Engineering Research Center.
  5. Bensi, M., Der Kiureghian, A., Straub, D. (2013) Efficient Bayesian Network Modeling of Systems, Reliab. Eng. & Syst. Saf., 112(2013), pp.200~213. https://doi.org/10.1016/j.ress.2012.11.017
  6. Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E. (2001) Improving the Analysis of Dependable Systems by Mapping Fault Trees into Bayesian Networks, Reliab. Eng. & Syst. Saf., 71(2001), pp.249~260. https://doi.org/10.1016/S0951-8320(00)00077-6
  7. Bursi, O.S., Filippo, R., Salandra., V., Pedot, M., Reza, M.S. (2018) Probabilistic Seismic Analysis of an LNG Subplant, J. Loss Prev. Process Ind., 53(2018), pp.45~60. https://doi.org/10.1016/j.jlp.2017.10.009
  8. Byun, J.-E., Zwirglmaier, K., Straub, D., Song, J. (2017) Matrix-based Bayesian Network for Efficient Memory Storage and Flexible Inference, Reliab. Eng. & Syst. Saf., 185(2017), pp.533~545.
  9. EPRI (1994) Methodology for Developing Seismic Fragilities, TR-103959, Electric Power Research Institute.
  10. EPRI (2003) Seismic Probabilistic Risk Assessment Implementation Guide, TR-1002989, Electric Power Research Institute.
  11. EPRI (2018) Seismic Fragility and Seismic Margin Guidance for Seismic Probabilistic Risk Assessments, 3002012994, Electric Power Research Institute.
  12. Hauptmanns, U. (2004) Semi-Quantitative Fault Tree Analysis for Process Plant Safety using Frequency and Probability Ranges, J. Loss Prev. Process Ind., 17(2004), pp.339~345. https://doi.org/10.1016/j.jlp.2004.06.004
  13. Hwang, H.H.M., Chou, T. (1998) Evaluation of Seismic Performance of an Electric Substation using Event Tree/Fault Tree Technique, Probab. Eng. Mech., 13(2), pp.117~124. https://doi.org/10.1016/S0266-8920(97)00018-0
  14. Kim, M.-K., Choun, U.-S., Choi, I.-K., Oh, K.-H. (2009) Seismic Fragility Analysis of Substation Systems by Using the Fault Tree Method, J. Earthq. Eng. Soc. Korea, 13(2), pp.47~58.
  15. Kwag, S., Eem, S., Choi, E., Ha, J. G., Hahm, D. (2021) Suggestions for Enhancing Sampling-based Approach of Seismic Probabilistic Risk Assessment, J. Comput. Struct. Eng. Inst. Korea, 34(2), pp.77~84. https://doi.org/10.7734/COSEIK.2021.34.2.77
  16. Kwag, S., Gupta, A. (2016) Bayesian Network Technique in Probabilistic Risk Assessment for Multiple Hazards, Proceedings of 24th International Conference on Nuclear Engineering (ICONE 24), June 26-30, 2016, Charlotte, NC, US.
  17. Lee, S.-H., Song, J. (2016) Bayesian-Network-Based System Identification of Spatial Distribution of Structural Parameters, Eng. Struct., 127(2016), pp.260~277. https://doi.org/10.1016/j.engstruct.2016.08.029
  18. Lee, T.-H., Kwon, S., Park, H.-S. (2013) Development of Seismic Fragility Functions of LNG Storage Tanks by an Analytical Method, J. Korean Soc. Hazard Mitig., 13(1), pp.89~95. https://doi.org/10.9798/KOSHAM.2013.13.5.009
  19. Oh, J., Kwag, S. (2018) A Study on Seismic Probabilistic Safety Assessment for a Research Reactor, J. Comput. Struct. Eng. Inst. Korea, 31(1), pp.31~88. https://doi.org/10.7734/COSEIK.2018.31.1.31
  20. Park, H.-S., Lee, T.-H. (2015) Seismic Performance Evaluation of Boil-Off Gas Compressor in LNG Terminal, The Open Civil Eng. J., 2015(9), pp.557~569.
  21. Vanem, E., Antao, P., Ostvik, I., Castillo, F. (2008) Analysing the Risk of LNG Carrier Operations, Reliab. Eng. & Syst. Saf., 93(2008), pp.1328~1344. https://doi.org/10.1016/j.ress.2007.07.007
  22. Yi, S., Papakonstantinou, K.G., Andriotis, C.P., Song, J. (2022) Appraisal and Mathematical Properties of Fragility Analysis Methods, 13th International Conference on Structural Safety & Reliability (ICOSSAR), Shanghai, China.
  23. Zwirglmaier, K. (2016) Reliability Analysis with Bayesian Networks, Ph.D Thesis, Technische Universitat Munchen.