DOI QR코드

DOI QR Code

Dynamic Behavior Characteristics of Group Piles with Relative Density in Sandy Soil

건조 모래지반의 상대밀도에 따른 무리말뚝의 동적거동특성

  • Received : 2023.08.07
  • Accepted : 2023.08.24
  • Published : 2023.09.01

Abstract

The lateral load which is applied to the pile foundation supporting the superstructure during an earthquake is divided into the inertia force of the upper structure and the kinematic force of the ground. The inertia force and the kinematic force could cause failure to the pile foundation through different complex mechanisms. So it is necessary to predict and evaluate interaction of the ground-pile-structure properly for the seismic design of the foundation. The interaction is affected by the lateral behavior of the structure, the length of the pile, the boundary conditions of the head, and the relative density of the ground. Confining pressure and ground stiffness change accordingly when the relative density changes, and it results that the coefficient of subgrade reaction varies depending on each system. Horizontal bearing behavior and capacity of the pile foundation vary depending on lateral load condition and relative density of the sandy soil. Therefore, the 1g shaking table tests were conducted to confirm the effect of the relative density of the dried sandy soil to dynamic behavior of the group pile supporting the superstructure. The result shows that, as the relative density increases, maximum acceleration of the superstructure and the pile cap increases and decreases respectively, and the slope of the p-y curve of the pile decreases.

지진 시 상부구조물을 지지하는 말뚝기초에 가해지는 수평 하중은 상부구조물의 관성력과 지반의 운동력으로 구분된다. 상부구조물의 관성력과 지반의 운동력은 서로 다른 복잡한 메커니즘을 통해 말뚝기초에 피해를 입힐 수 있기 때문에 지반-말뚝-구조물의 상호작용을 적절히 예측하고 평가하는 것이 말뚝기초의 안전한 내진설계를 위해 필요하다. 지반-말뚝-구조물의 상호작용은 구조물의 동적특성, 말뚝의 길이, 두부 경계조건 및 지반의 상대밀도에 영향을 받는다. 지반의 상대밀도가 달라지면 그에 따른 구속압 및 지반 강성이 변화하며 결과적으로 지반반력계수도 각 시스템에 따라 달라지게 된다. 말뚝기초의 수평방향 지지거동 및 극한 지지력은 수평방향 하중조건 및 모래지반의 상대밀도에 따라 다르게 나타난다. 이에 본 연구에서는 건조된 모래지반의 상대밀도가 상부구조물을 지지하는 무리말뚝의 동적거동에 미치는 영향을 확인하기 위해 1g 진동대 모형실험을 수행하였다. 그 결과 상대밀도가 증가함에 따라 상부구조물의 가속도는 증가하고 말뚝캡의 가속도는 감소하는 것으로 확인되었으며, 말뚝의 p-y 곡선의 기울기는 감소하는 것으로 확인되었다.

Keywords

References

  1. Ahn, K. K. (2003), Pile-soil-pile interaction in pile groups under lateral loading, Ph D. dissertation, Illinois Tech, Chicago, USA. (In Korean).
  2. Bao, N. N., Nghiem, X. T. and Kim, S. R. (2018), Evaluation of dynamic p-y curves of group piles using centrifuge model tests, Journal of the Korean Geotechnical Society, Vol. 34, No. 5, pp. 53~63 (In Korean). https://doi.org/10.7843/KGS.2018.34.5.53
  3. Baek, S. H., Kim, J. Y., Lee, S. H. and Chung, C. K. (2016), Effect of relative density on lateral load capacity of a cyclic Laterally Loaded Pile in Sandy Soil Journal of the Korean Geotechnical Society, Vol. 32, No. 4, pp. 41~49 (In Korean). https://doi.org/10.7843/kgs.2016.32.4.41
  4. Brandenberg, S.J., Wilson, D.W. and Rashid, M.M. (2010), Weighted residual numerical differentiation algorithm applied to experimental bending moment data, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 6, pp. 854~863.  https://doi.org/10.1061/(ASCE)GT.1943-5606.0000277
  5. Haiderali, A.E. and Madabhushi, G. (2016), Evaluation of curve fitting techniques in deriving p-y curves for laterally loaded piles, Geotechnical and Geological Engineering, Vol. 34, No. 5, pp. 1453~1473.  https://doi.org/10.1007/s10706-016-0054-2
  6. Hardin, B.O. and Drnevich, V.P. (1972), Shear modulus and damping in soils: measurement and parameter effects, Journal of Soil Mechanics and Foundation Engineering Division, Vol. 98, No. SM6, pp. 603~624.  https://doi.org/10.1061/JSFEAQ.0001756
  7. Iai, S. and Sugano, T. (1999), Soil-structure interaction studies through shaking table tests, Proc. of The Second Interanational Conference on Earthquake Geotechnical Engineering, Vol. 3, pp. 927~940 
  8. Kwon, S. Y. and Yoo, M. T. (2016), Parametric study of dynamic soil-pile-structure interaction in dry sand by 3D numerical mode, JOURNAL OF THE KOREAN GEOTECHNICAL SOCIETY, Vol. 32, No. 9, pp. 51~62 (In Korean). https://doi.org/10.7843/kgs.2016.32.9.51
  9. Kim, S. h., Ahn, K. K. and Kang, H. S. (2018), Dynamic behavior of group piles according to pile cap embedded in sandy ground, Journal of the Korean Geo-Environmental Society, Vol. 19, No. 10, pp. 35~41 (In Korean).
  10. LeBlanc, C., Houlsby, G.T. and Byrne, B.W. (2010), Response of stiff piles in sand to long-term cyclic lateral loading, geotechnique, Vol. 60, No. 2, pp. 79~90.  https://doi.org/10.1680/geot.7.00196
  11. Lee, H. K., Ahn, K. K., Kang, H. S. (2019), The effect of dynamic behavior on changing pile cap size of pile group in sandy soil, Journal of the Korean Geo-Environmental Society, Vol. 20, No. 8, pp. 5~12. (In Korean).
  12. Long, J. and Vanneste, G. (1994), Effect of cyclic lateral loads on piles in sand, J. of Soil Mechanics and Foundation Division, ASCE, Vol. 120, No. 1, pp. 225~244.  https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(225)
  13. Nicolai and Ibsen (2014), Small-scale testing of cyclic laterally loaded monopiles in dense saturated sand, J. of Ocean and Wind Energy, Vol. 1, No. 4, pp. 240~245. 
  14. Suzuki, H., Tokimatsu, K. and Tabata K. (2014), Factors affecting stress distribution of a 3×3 pile group in dry sand based on three-dimensional large shaking table tests, Journal of Soils and Foundations, the japanese Geotechnical Society, Vol. 54, No. 4, pp. 699~712.  https://doi.org/10.1016/j.sandf.2014.06.009
  15. Yang, E. K. (2009), Evaluation of Dynamic p-y Curves for a Pile in Sand from 1g Shaking Table Tests, Ph. D. Dissertation, Seoul National University, South Korea (In Korean).