DOI QR코드

DOI QR Code

Erosion Characteristics of TGase-added Biopolymers

TGase 첨가 바이오폴리머의 침식특성 연구

  • Kanghyun Kim (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Seunghyun Kim (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Dohee Kim (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Jongho Shin (Department of Civil and Environmental Engineering, Konkuk University)
  • Received : 2023.04.27
  • Accepted : 2023.08.09
  • Published : 2023.09.01

Abstract

Cement-based reinforcement materials, which are representative slope reinforcement materials, can cause contamination of ground and groundwater when ground injection or surface application is applied. Accordingly, slope reinforcement materials using eco-friendly biopolymers are attracting attention as a means of replacing existing materials, but the biopolymers currently used are easily dissolved when exposed to groundwater or rainfall environments, reducing strength. In order to solve this problem, the cross-linking of protein between sodium casein and Transglutaminase (TGase, C20H16N4O2S2) was used to increase the water resistance of biopolymers, and a rainfall slope test was conducted to evaluate their usability and applicability as a slope reinforcing material. In the case of reinforcement with only sodium casein, the precipitation dissolved sodium casein, and the slope was completely destroyed in 1 hour. On the other hand, it was observed that the slope reinforced by adding a small amount of TGase (0.5%) do not collapse even after 80 hours of rainfall duration due to increased water resistance. Strength and water resistance increases due to the addition of a small amount of TGase, and its applicability as an eco-friendly reinforcement is confirmed.

대표적 사면 보강재료인 시멘트 계열의 보강재는 지반주입 또는 지표 도포 시 지반 및 지하수의 오염이 발생할 수 있다. 이에 따라 친환경 바이오폴리머를 사용한 사면 보강재료가 기존의 재료를 대체할 수단으로 관심받고 있으나, 현재 사용되고 있는 바이오폴리머는 지하수 또는 강우 환경에 노출되면 쉽게 용해되어 강도가 감소되는 문제가 있다. 이러한 문제를 해결하기 위하여 본 연구에서는 카제인나트륨과 Transglutaminase(TGase, C20H16N4O2S2)의 단백질 교차결합을 이용하여 바이오폴리머의 내수성을 증가시켰으며, 사면 보강재료로서 사용성과 적용성을 평가하기 위해 강우사면시험을 수행하였다. 카제인나트륨만으로 보강한 경우 강우로 인해 카제인나트륨이 용해되어 1시간 만에 사면이 완전히 파괴되었다. 반면 TGase를 소량(0.5%) 첨가하여 보강한 사면은 내수성이 증가하여 강우 지속시간 80시간이 지나도 붕괴되지 않음을 관찰하였다. TGase 소량 첨가로 인한 강도 및 내수성 증가가 나타났으며, 친환경 보강재로서의 적용성을 확인하였다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2019R1A2C1003488, No. 2022R1A2C1003139).

References

  1. ASTM D422-63 (2002), Standard test method for particle-size analysis of soils.
  2. ASTM D4253 (2016), Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.
  3. ASTM D4254 (2007), Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.
  4. Chang, I., Im, J. and Cho, G. C. (2016), Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering, Sustainability, Vol. 8, No. 3, pp. 1~23.
  5. Chang, I., Im, J., Chung, M. K. and Cho, G. C. (2018). Bovine casein as a new soil strengthening binder from diary wastes. Construction and Building Materials, Vol. 160, pp. 1~9. https://doi.org/10.1016/j.conbuildmat.2017.11.009
  6. Chang, I., Im, J., Prasidhi, A. K. and Cho, G. C. (2015), Effects of Xanthan gum biopolymer on soil strengthening, Construction and Building Materials, No. 74, pp. 65~72.
  7. Fatehi, H., Abtahi, S. M., Hashemolhosseini, H. and Hejazi, S. M. (2018). A novel study on using protein based biopolymers in soil strengthening. Construction and Building Materials, Vol. 167. pp. 813~821. https://doi.org/10.1016/j.conbuildmat.2018.02.028
  8. Gupta, S. C., Hooda, K. S., Mathur, N. K. and Gupta, S. (2009), Tailoring of guar gum for desert sand stabilization, Vol. 16, No. 6, pp. 507~512.
  9. Iftime, M. M., Ailiesei, G. L., Ungureanu, E. and Marin, L. (2019), Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention, Carbohydrate polymers, Vol. 223. pp. 1~10.
  10. Jeong, H. S., Kang, H. S., Suk, J. W. and Kim, H. J. (2019), Rainfall distribution characteristics of artificial rainfall system for steep-slope collapse model experiment, Journal of the Korea Academia-Industrial cooperation Society, Vol. 20, No. 12, pp. 828~835.
  11. Khatami, H. R. and Kelly, B. C. (2013), Improving mechanical properties of sand using biopolymers, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 8, pp. 1402~1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861
  12. Kim, Y. S., Kim, J. H., Bhang, I. H. and Seo, S. G. (2013a), A study on rainfall-induced erosion of land surface on reinforced slope using soil improvement material, Journal of the Korean Geotechnical Society, Vol. 29, No. 1, pp. 49~59 (in Korean). https://doi.org/10.7843/kgs.2013.29.1.49
  13. Kim, S. M. (2004), Tunnel grouting design and construction, Korea Resources Corporation (In Korean).
  14. Kim, Y. S., Kim, J. H., Lee, J. K. and Kim, S. S. (2013b), A study on soil slope stability design considering seepage analysis, Journal of the Korean Geotechnical Society, Vol. 29, No. 1, pp. 135~147 (in Korean). https://doi.org/10.7843/kgs.2013.29.1.135
  15. Laloui, L. (2013), bio-and chemo-mechanical processes in geotechnical engineering, Geotechnique, Vol. 63, No. 3, pp. 189~190. https://doi.org/10.1680/geot.2012.63.3.189
  16. Lee, S., Chang, I., Chung, M. K., Kim, Y. and Kee, J. (2017), Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing. Geomech. Eng, Vol. 12, No. 5, pp. 831~847. https://doi.org/10.12989/gae.2017.12.5.831
  17. Lorenzen, P. C. (2000), Renneting properties of transglutami-nase-treated milk, Milchwissenschaft, Vol. 55, No. 8, pp. 433~437.
  18. MOLIT (2015), Tunnel Standard Specification (In Korean).
  19. MOLIT (2016), Ground grouting (KCS 11 30 45 : 2016) standard specification (In Korean).
  20. MOLIT (2018), River bank (KDS 51 50 05 : 2018) Korean Design Standard (In Korean).
  21. Motoki, M. and Seguro, K. (1998), Transglutaminase and its use for food processing, Trends in food science & technology, Vol. 9, No. 5, pp. 204~210. https://doi.org/10.1016/S0924-2244(98)00038-7
  22. Mycek, M. J., Clarke, D. D., Neidle, A. and Waelsch, H. (1959), Amine incorporation into insulin as catalyzed by transglutaminase, Archives of biochemistry and biophysics, Vol. 84, No. 2, pp. 528~540. https://doi.org/10.1016/0003-9861(59)90613-7
  23. Park, S. S. and Woo, S.W. (2019), Evaluation of Strength and Durability of Casein-cemented Sand, Journal of the Korean Geotechnical Society, Vol. 35, No. 1, pp. 31~42 (In Korean).
  24. Rebouillat, S. and Ortega-Requena, S. (2015), Potential applications of milk fractions and valorization of dairy by-products: A review of the state-of-the-art available data, outlining the innovation potential from a bigger data standpoint, Journal of Biomaterials and Nanobiotechnology, Vol. 6, No. 3, pp. 176~203. https://doi.org/10.4236/jbnb.2015.63018
  25. Sabadini, R. C., Martins, V. C. and Pawlicka, A. (2015), Synthesis and characterization of gellan gum: chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose, Vol. 22, No. 3, pp. 2045~2054. https://doi.org/10.1007/s10570-015-0590-6
  26. Yurij A. Antonov, Irina L. Zhuravleva, Evgeniya A. Bezrodn -kh, Boris B. Berezin, Sergey N. Kulikov, Vladimir E. Tikhonov, (2023), Complexation of oligochitosan with sodium caseinate in alkalescent and weakly acidic media, Carbohydrate Polymers, Vol. 302, pp. 1~9. https://doi.org/10.1016/j.carbpol.2022.120391