DOI QR코드

DOI QR Code

제주 스코리아의 제올라이트화에 따른 구리와 아연 이온의 흡착 용량 변화

Variation of Copper and Zinc-Ion Adsorption Capacity via Zeolitification of Jeju Scoria

  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 감상규 (제주대학교 환경공학과) ;
  • 허철구 (제주대학교 환경공학과)
  • Chang-Han Lee (Department of Environmental Engineering, Jeju National University) ;
  • Sang-Kyu, Kam (Department of Environmental Administration, Catholic University of Pusan) ;
  • Chul-Goo Hu (Department of Environmental Administration, Catholic University of Pusan)
  • 투고 : 2023.07.28
  • 심사 : 2023.08.21
  • 발행 : 2023.08.31

초록

Scoria from Jeju-island (Jeju scoria) was converted into zeolitic material (Z-SA) via zeolitification using the fusion/hydrothermal method. Jeju scoria could be synthesized into Z-SA to from a surface covered with Na-A zeolite crystals, which was confirmed through an analysis of X-ray diffraction peak patterns and scanning electron microscopy images. Jeju scoria and Z-SA were employed as adsorbents to evaluate the adsorption rate and adsorption capacities for Cu2+ and Zn2+ ions. The adsorption rates and isothermal adsorption capacities could be well fitted by the pseudo-quadratic adsorption kinetics and Langmuir adsorption isotherm, respectively. The maximum adsorption capacities (qm) of Z-SA for Cu2+ and Zn2+ ions were found to be 163.36 mg/g and 120.51 mg/g, respectively, using the Langmuir adsorption isotherm. When Z-SA is synthesized from Jeju scoria via zeolitification using the fusion/hydrothermal method, Z-SA exhibits an adsorption capacity that is more than approximately 100 times the value exhibited by Jeju scoria. As a result, the synthesized Z-SA was regarded as an effective, economic adsorbent.

키워드

참고문헌

  1. Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57(1), 385-470. https://doi.org/10.1515/zpch-1907-5723
  2. Ho, Y. S., McKay, G., 1998, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76(4), 822-827. https://doi.org/10.1002/cjce.5450760419
  3. Hyun, S. S., 1999, Studies on the removal of heavy metal ions in wastewater using the zeolites synthesized from Cheju scoria, MS Thesis, Cheju National University, Cheju, 1-70.
  4. Hui, K. S., Chao, C. Y. H., Kot, S. C., 2005, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products recycled coal fly ash, J. Hazard. Mater., B127, 89-101. https://doi.org/10.1016/j.jhazmat.2005.06.027
  5. Jeon, B. E., Ahn, B. J., Chang, W. H., Kam, S. K., Lee, M. G., 2004, Zeolitic conversion of cheju scoria, J. Ind. Eng. Chem., 10(4), 618-622.
  6. Jo, E., Lee, C. H., Kim, M. I., 2021, Removal of cobalt ion in aqueous solution using zeolitic materials synthesized from Jeju volcanic rocks, J. Environ. Sci. Int., 30(9), 719-726. https://doi.org/10.5322/JESI.2021.30.9.719
  7. Joseph, I. V., Tosheva, L., Doyle, A. M., 2020, Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash, J. Environ. Chem. Eng., 8, 103895.
  8. Kam, S. K., Kim, D. S., Lee, M. G., 1999, Comparions of removal performances of divalent heavy metals by natural and pretreated zeolites, J. Environ. Sci. Int., 8, 399-409.
  9. Kam, S. K., Hong, J. Y., Hyun, S. S., Ahn, B. J., Lee, M. G., 2002a, Removal of copper ion by Na-P1 synthesized from Jeju scoria, J. Environ. Sci., 11(1), 75-83. https://doi.org/10.5322/JES.2002.11.1.075
  10. Kam, S. K., Hyun, S. S., Lee, M. G., 2002b, Adsorption characteristics of copper and lead ions by Jeju Scoria, J. Korean Soc. Environ. Eng, 24(1), 57-69.
  11. Kam, S. K., Hyun, S. S., Lee, M. G., 2011, Adsorption of lead ion by zeolite synthesized from Jeju Scoria, J. Environ. Sci. Int., 20, 1437-1445. https://doi.org/10.5322/JES.2011.20.11.1437
  12. Kim, J. T., Lee, C. H., Kam, S. K., 2020, Adsorption characteristics of Ni2+, Zn2+ and Cr3+ by zeolite synthesized from Jeju scoria, J. Environ. Sci. Int., 29(7), 739-748. https://doi.org/10.5322/JESI.2020.29.7.739
  13. Kwon, J. S., Yun, S. T., Lee, J. H., Kim, S. O, Jo, H. Y., 2010, Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: Kinetics and equilibria of sorption, J. Hazard. Mater., 174, 307-313. https://doi.org/10.1016/j.jhazmat.2009.09.052
  14. Lagergren, S., 1898, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar, 24(4), 1-39.
  15. Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
  16. Lee, C. H., Hyun, S. S., Kam, S. K., 2020, Adsorption characteristics of ammonia-nitrogen by zeolitic materials synthesized from Jeju scoria, 29(11), 1089-1098. https://doi.org/10.5322/JESI.2020.29.11.1089
  17. Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption characteristic of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 23(12), 1987-1998. https://doi.org/10.5322/JESI.2014.23.12.1987
  18. Lee, M. G., Lim, J. H., Hyun, S. S., Kam, S. K., 2002, Adsorption characteristics of copper Ion by Cheju Scoria, HWAHAK KONGHAK, 40(2), 252-258.
  19. Lee, M. G., Park, J. W., Kam, S. K., Lee, C. H., 2018, Synthesis of Na-A zeolite from Jeju Island scoria using fusion/hydrothermal method, Chemosphere, 207, 203-208. https://doi.org/10.1016/j.chemosphere.2018.05.080
  20. Moraci, N., Calabro, P. S., 2010, Heavy metals removal and hydraulic performance in zero-valent ironpumicepermeable reactive barriers, J. Env. Man., 91, 2336-2341. https://doi.org/10.1016/j.jenvman.2010.06.019
  21. Novembre, D., Di Sabatino, B., Gimeno, D., Garcia-Valles, M., Martinez-Manent, S., 2004, Synthesis of Na-X zeolites from tripolaceous deposits (Crotone, Italy) and volcanic zeolitised rocks (Vico volcano, Italy), Microporous Mesoporous Mater., 75, 1-11. https://doi.org/10.1016/j.micromeso.2004.06.022
  22. Ok, Y. S., Yang, J. E., Zhang, Y. S., Kim, S. J., Chung, D. Y. 2007, Heavy metal adsorption by a formulated zeolite-Portland cement mixture, J. Hazard. Mater. 147, 91-96. https://doi.org/10.1016/j.jhazmat.2006.12.046
  23. Ozturk, B., Yildirim, Y., 2008, Investigation of sorption capacity of pumice for SO2 capture, Proc. Saf. Env. Prot., 86, 31-36. https://doi.org/10.1016/j.psep.2007.10.010
  24. Qui, W., Zheng, Y., 2009, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J., 145, 483-488. https://doi.org/10.1016/j.cej.2008.05.001
  25. Sharafi, K., Pirsaheb, M., Gupta, V. K., Agarwal, S., Moradi, M., Vasseghian, Y., Dragoli, E. N., 2019, Phenol adsorption on scoria stone as adsorbent - Application of response surface method and artificial neural networks, J. Mol. Liq., 274, 699-714. https://doi.org/10.1016/j.molliq.2018.11.006
  26. Sprynskyy, M., Boguslaw, B., Artur, T., Jacek, N., 2006, Study of the selection mechanism of heavy metal adsorption on clinoptilolite, J. Col. Inter. Sci., 304, 21-28. https://doi.org/10.1016/j.jcis.2006.07.068
  27. Tanaka, H., Fujii, A., 2009, Effect of stirring on the dissolution of coal fly ash and synthesis of pure form Na-A and -X zeolites by two step process, Adv. Powd. Tech., 20(5), 473-479. https://doi.org/10.1016/j.apt.2009.05.004
  28. Treacy, M. M. J., Higgins, J. B., 2001, Collection of simulated XRD powder patterns for zeolites, Elsevier, Amsterdam.
  29. Yoon, J. S., 1995, A study on parasitic cones of the northern parts of Jeju island, Korea, Bull. Mar. Res. Inst., Jeju Nat'l Univ., 19, 25-38.
  30. Yoshida, A., Inoue, K., 1986, Formation of faujasite-type zeolite from ground Shirasu volcanic glass. Zeolites 6, 467-473. https://doi.org/10.1016/0144-2449(86)90031-X