DOI QR코드

DOI QR Code

Twenty-five unrecorded bacterial species of the Republic of Korea belonging to the phylum Actinomycetota discovered during surveys in 2021

  • Inhyup Kim (Department of Life Science, Dongguk University-Seoul) ;
  • Wan-Taek Im (Department of Biotechnology, Hankyong National University) ;
  • Kiseong Joh (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Myung Kyum Kim (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Jung-Hoon Yoon (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Wonyong Kim (Department of Microbiology, College of Medicine, Chung-Ang University) ;
  • Taegun Seo (Department of Life Science, Dongguk University-Seoul)
  • Received : 2023.03.15
  • Accepted : 2023.07.11
  • Published : 2023.08.31

Abstract

We isolated and identified 25 unrecorded bacterial species belonging to the phylum Actinomycetota found in the Republic of Korea. Sequence comparison of 16S rRNA was performed using the NCBI BLAST and EzBioCloud database to identify 25 species, which had a 16S rRNA gene sequence similarity of >98.8% and were allocated as unrecorded species in the Republic of Korea. Among the 25 unrecorded bacterial strains, Streptomyces was the most common with nine species, followed by Leifsonia with two species. Isoptericola, Nocardioides, Dermacoccus, Sinomonas, Patulibacter, Marmoricola, Allobranchiibius, Aldersonia, Actinokineospora, Agromyces, Aeromicrobium, Cellulomonas, and Gordonia with one species each were also found. Twenty-five unrecorded species were excavated in various environments, such as tidal flats, ferns, soil, pine cones, moss, mud, wetlands, and plants. These isolates were characterized on the basis of their phylogenetic, biochemical properties, and morphological data, and species descriptions were provided.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment(MOE) of the Republic of Korea (NIBR202102205).

References

  1. Anandan, R., D. Dharumadurai and G.P. Manogaran. 2016. An Introduction to Actinobacteria. In: Dhanasekaran, D. and Y. Jiang (eds.), Actinobacteria Basics and Biotechnological Applications. IntechOpen, London, UK. pp. 3-37.
  2. Barka, E.A., P. Vatsa, L. Sanchez, N. Gaveau-Vaillant, C. Jacquard, H.-P. Klenk, C. Clement, Y. Ouhdouch and G.P. van Wezel. 2016. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews 80:1-43. https://doi.org/10.1128/MMBR.00019-15
  3. Bhatti, A.A., S. Haq and R.A. Bhat. 2017. Actinomycetes benefaction role in soil and plant health. Microbial Pathogensis 111:458-467. https://doi.org/10.1016/j.micpath.2017.09.036
  4. Bucks, J.D. 1982. Nonstaining (KOH) Method for Determination of Gram Reactions of Marine Bacteria. Applied and Environmental Microbiology 44:992-993. https://doi.org/10.1128/aem.44.4.992-993.1982
  5. Chhetri, G., J. Kim, I. Kim, M. Kang and T. Seo. 2021. Chryseobacterium caseinilyticum sp. Nov., a casein hydrolyzing bacterium isolated from rice plant and emended description of Chryseobacterium piscicola. International Journal of Systematic and Evolutionary Microbiology 71:044854.
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  7. Fitch, W.M. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Biology 20:406-416.
  8. Guindon, S. and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52:696-704. https://doi.org/10.1080/10635150390235520
  9. Hohmann, C., S. Kathrin, B. Christina, I. Elizabeth, M. Graeme, T.B. Alan, L.J. Amanda, B. Roselyn, E.M.S. James, G. Michael, B. Winfried, K. Marco, F.I. Johannes, D.S. Roderich and P.F. Hans. 2009. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. The Journal of Antibiotics 62:99-104. https://doi.org/10.1038/ja.2008.24
  10. Huang, M.J., J.J. Fei, N. Salam, C.J. Kim, W.N. Hozzein, M. Xiao, H.Q. Huang and W.J. Li. 2016. Streptomyces zhihengii sp. nov., isolated from rhizospheric soil of Psammosilene tunicoides. Archives of Microbiology 198:743-749. https://doi.org/10.1007/s00203-016-1233-5
  11. Iqbal, H.A., L. Low-Beinart, J.U. Obiajulu and S.F. Brady. 2016. Natural Product Discovery through Improved Functional Metagenomics in Streptomyces. Journal of the American Chemical Society 138:9341-9344. https://doi.org/10.1021/jacs.6b02921
  12. Jeong, S.Y., H.J. Shin, T.S. Kim, H.S. Lee, S.K. Park and H.M. Kim. 2006. Streptokordin, a New Cytotoxic Compound of the Methylpyridine Class from a Marine-derived Streptomyces sp. KORDI-3238. The Journal of Antibiotics 59:234-240. https://doi.org/10.1038/ja.2006.33
  13. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  14. Liu, Y., X. Chen, Z. Li, W. Xu, W. Tao, J. Wu, J. Yang, Z. Deng and Y. Sun. 2017. Functional Analysis of Cytochrome P450s Involved in Streptovaricin Biosynthesis and Generation of Anti-MRSA Analogues. ACS Chemical Biology 12:2589-2597. https://doi.org/10.1021/acschembio.7b00467
  15. Lucas, X., C. Senger, A. Erxleben, B.A. Gruning, K. Doring, J. Mosch, S. Flemming and S. Gunther. 2013. StreptomeDB: a resource for natural compounds isolated from Streptomyces species. Nucleic Acids Research 41:1130-1136. https://doi.org/10.1093/nar/gks1253
  16. Ludwig, W., J. Euzeby, P. Schumann, H.-J. Busse, M.E. Trujillo, P. Kampfer and W.B. Whitman. 2012. Road map of the phylum Actinobacteria. Bergey's Manual® of Systematic Bacteriology 1-28.
  17. Manivasagan, P., J. Venkatesan, K. Sivakumar and S.K. Kim. 2014. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiological Research 169:262-278. https://doi.org/10.1016/j.micres.2013.07.014
  18. Saitou, N. and M. Nei. 1987. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution 4:406-425.
  19. Sarmiento-Vizcaino, A., J. Martin, F.J. Ortiz-Lopez, F. Reyes, L.A. Garcia and G. Blanco. 2022. Natural products, including a new caboxamycin, from Streptomyces and other Actinobacteria isolated in Spain from storm clouds transported by Northern winds of Arctic origin. Frontiers in Chemistry 10:948795.
  20. Silva, L.J., E.J. Crevelin, D.T. Souza, G.V. Lacerda-Junior, V.M. de Oliveira, A.L.T.G. Ruiz, L.H. Rosa, L.A.B. Moraes and I.S. Melo. 2020. Actinobacteria from Antarctica as a source for anticancer discovery. Scientific Reports 10:1-15. https://doi.org/10.1038/s41598-019-56847-4
  21. Yoon, S.H., S.M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo and J. Chun. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology 67:1613-1617. https://doi.org/10.1099/ijsem.0.001755