DOI QR코드

DOI QR Code

RF 스퍼터링 시스템을 이용하여 증착한 비정질 Ga2O3 박막의 스퍼터링 파워에 따른 특성 평가

The Effect of Sputtering Power on Amorphous Ga2O3 Deposited by RF Sputtering System

  • Hyungmin Kim (Department of Electrical Engineering, Gachon University) ;
  • Sangbin Park (Department of Electrical Engineering, Gachon University) ;
  • Kyunghwan Kim (Department of Electrical Engineering, Gachon University) ;
  • Jeongsoo Hong (Department of Electrical Engineering, Gachon University)
  • 투고 : 2023.06.14
  • 심사 : 2023.08.02
  • 발행 : 2023.09.01

초록

The effect of sputtering power on the amorphous Ga2O3 thin film deposited using the radio frequency sputtering system was evaluated. Amorphous Ga2O3 is cheaper and more efficiently fabricated than crystalline Ga2O3, and is studied in various fields such as RRAM, photodetector, and flexible devices. In this study, amorphous Ga2O3 was deposited by radio frequency sputtering system and represented a transmittance of over 80% in the visible light region and a homogeneous and dense surface. The optical band gap energy decreased as the sputtering power increased owing to the quantum size effect. Thus, the specific band gap of amorphous Ga2O3 can be obtained by adjusting the sputtering power, it indicates amorphous Ga2O3 can be used in various fields.

키워드

과제정보

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(RS-2023-00227306) 및 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012451, 2022년 산업혁신인재성장지원사업).

참고문헌

  1. M. Marezio and J. P. Remeika, J. Chem. Phys., 46, 1862 (1967). doi: https://doi.org/10.1063/1.1840945 
  2. V. M. Bermudez, Chem. Phys., 323, 193 (2006). doi: https://doi.org/10.1016/j.chemphys.2005.08.051 
  3. H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, and R. I. Walton, J. Phys. Chem. C, 118, 16188 (2014). doi: https://doi.org/10.1021/jp5033806 
  4. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, J. Phys.: Condens. Matter, 19, 346211 (2007). doi: https://doi.org/10.1088/0953-8984/19/34/346211 
  5. H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton, Chem. Eur. J., 19, 2803 (2013). doi: https://doi.org/10.1002/chem.201203359 
  6. D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, Opt. Mater. Express, 4, 1067 (2014). doi: https://doi.org/10.1364/OME.4.001067 
  7. D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, and W. Tang, Mater. Today Phys., 11, 100157 (2019). doi: https://doi.org/10.1016/j.mtphys.2019.100157 
  8. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). doi: https://doi.org/10.1063/1.3674287 
  9. T. Park, S. Park, J. H. Park, J. Y. Min, Y. Jung, S. Kyoung, T. Y. Kang, K. Kim, Y. S. Rim, and J. Hong, Nanomaterials, 12, 2983 (2022). doi: https://doi.org/10.3390/nano12172983 
  10. J. Wang, Y. Xiong, L. Ye, W. Li, G. Qin, H. Ruan, H. Zhang, L. Fang, C. Kong, and H. Li, Opt. Mater., 112, 110808 (2021). doi: https://doi.org/10.1016/j.optmat.2021.110808 
  11. Y. Yuan, W. Hao, W. Mu, Z. Wang, X. Chen, Q. Liu, G. Xu, C. Wang, H. Zhou, Y. Zou, X. Zhao, Z. Jia, J. Ye, J. Zhang, S. Long, X. Tao, R. Zhang, and Y. Hao, Fundam. Res., 1, 697 (2021). doi: https://doi.org/10.1016/j.fmre.2021.11.002 
  12. D. Y. Guo, Z. P. Wu, Y. H. An, P. G. Li, P. C. Wang, X. L. Chu, X. C. Guo, Y. S. Zhi, M. Lei, L. H. Li, and W. H. Tang, Appl. Phys. Lett., 106, 042105 (2015). doi: https://doi.org/10.1063/1.4907174 
  13. S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, Appl. Phys. Lett., 107, 252103 (2015). doi: https://doi.org/10.1063/1.4938123 
  14. W. F. Wu, B. S. Chiou, and S. T. Hsieh, Semicond. Sci. Technol., 9, 1242 (1994). doi: https://doi.org/10.1088/0268-1242/9/6/014 
  15. S. Yu, W. Xu, H. Zhu, W. Qiu, Q. Fu, and L. Kong, J. Alloys Compd., 883, 160622 (2021). doi: https://doi.org/10.1016/j.jallcom.2021.160622 
  16. M. Lee, Y. Park, K. Kim, and J. Hong, Thin Solid Films, 703, 137980 (2020). doi: https://doi.org/10.1016/j.tsf.2020.137980 
  17. Y. Huang, H. Wu, Y. Zhi, Y. Huang, D. Guo, Z. Wu, P. Li, Z. Chen, and W. Tang, Appl. Phys. A, 124, 611 (2018). doi: https://doi.org/10.1007/s00339-018-2037-z 
  18. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Lumin., 90, 123 (2000). doi: https://doi.org/10.1016/S0022-2313(99)00599-2