DOI QR코드

DOI QR Code

Photoelectrochemical performance of anodized nanoporous iron oxide based on annealing conditions

양극산화로 제조된 다공성 나노구조 철 산화막의 열처리 조건에 따른 광전기화학적 성질

  • Dongheon Jeong (Department of Chemistry and Chemical Engineering, Inha University) ;
  • JeongEun Yoo (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kiyoung Lee (Department of Chemistry and Chemical Engineering, Inha University)
  • 정동헌 (인하대학교 화학.화학공학융합학과) ;
  • 유정은 (인하대학교 화학.화학공학융합학과) ;
  • 이기영 (인하대학교 화학.화학공학융합학과)
  • Received : 2023.07.21
  • Accepted : 2023.08.11
  • Published : 2023.08.31

Abstract

Photoelectrochemical (PEC) water splitting is one of the promising methods for hydrogen production by solar energy. Iron oxide has been effectively investigated as a photoelectrode material for PEC water splitting due to its intrinsic property such as short minority carrier diffusion length. However, iron oxide has a low PEC efficiency owing to a high recombination rate between photoexcited electrons and holes. In this study, we synthesized nanoporous structured iron oxide by anodization to overcome the drawbacks and to increase surface area. The anodized iron oxide was annealed in Ar atmosphere with different purging times. In conclusion, the highest current density of 0.032 mA/cm2 at 1.23 V vs. RHE was obtained with 60 s of pursing for iron oxide(Fe-60), which was 3 times higher in photocurrent density compared to iron oxide annealed with 600 s of pursing(Fe-600). The resistances and donor densities were also evaluated for all the anodized iron oxide by electrochemical impedance spectra and Mott-Schottky plot analysis.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다. (No. 2021202080023C)

References

  1. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells, Chemical Reviews, 110 (2010) 6446-6473. https://doi.org/10.1021/cr1002326
  2. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38. https://doi.org/10.1038/238037a0
  3. E. Park, S.S. Patil, H. Lee, V.S. Kumbhar, K. Lee, Photoelectrochemical H2 evolution on WO3/BiVO4 enabled by single-crystalline TiO2 overlayer modulations, Nanoscale, 13 (2021) 16932-16941. https://doi.org/10.1039/D1NR04763A
  4. L.R. Nagappagari, S.S. Patil, J. Lee, E. Park, Y. Yu, K. Lee, Enhanced photoelectrochemical activity using NiCO2S4/spaced TiO2 nanorod heterojunction, Ceramics International, 48 (2022) 920-930. https://doi.org/10.1016/j.ceramint.2021.09.176
  5. L.R. Nagappagari, J. Lee, H. Lee, B. Jeong, K. Lee, Energy and environmental applications of Sn4+/Ti4+ doped α-Fe2O3@Cu2O/CuO photoanode under optimized photoelectrochemical conditions, Environmental Pollution, 271 (2021) 116318.
  6. M. Kim, N. Shin, J. Lee, K. Lee, Y. Kim, J. Choi, Photoelectrochemical water oxidation in anodic TiO2 nanotubes array: Importance of mass transfer, Electrochem. Commun., 132 (2021) 107133.
  7. V.S. Kumbhar, H. Lee, J. Lee, K. Lee, Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting, Journal of Colloid and Interface Science, 557 (2019) 478-487. https://doi.org/10.1016/j.jcis.2019.09.037
  8. Y. Choi, H. Lee, V.S. Kumbhar, Y. Choi, J. Kim, K. Lee, Enhancement of photoelectrochemical properties with α-Fe2O3 on surface modified FTO substrates, Ceramics International, 46 (2020) 20012-20019. https://doi.org/10.1016/j.ceramint.2020.05.072
  9. A. J. Cowan, W. Leng, P.R. Barnes, D.R. Klug, J. Durrant, Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting, Physical Chemistry Chemical Physics, 15 (2013) 8772-8778. https://doi.org/10.1039/c3cp50318f
  10. K.R.R. Gil, C. Wiggenhorn, B.S. Brunschwig, N.S. Lewis, Comparison between the quantum yields of compact and porous WO3 photoanodes, The Journal of Physical Chemistry C, 117 (2013) 14947-14957. https://doi.org/10.1021/jp4025624
  11. W. Lin, T. Chang, Y. Lu, T. Sato, M. Sone, K. Wei, Y. Hsu, Supercritical CO2-assisted electrochemical deposition of ZnO mesocrystals for practical photoelectrochemical applications, The Journal of Physical Chemistry C, 117 (2013) 25596-25603. https://doi.org/10.1021/jp409607m
  12. C. X. Guo, Y. Dong, H. B. Yang, C. M. Li, Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting, Advanced Energy Materials, 3 (2013) 997-1003. https://doi.org/10.1002/aenm.201300171
  13. A. G. Tamirat, J. Rick, A. A. Dubale, W. Su, B. Hwang, Using hematite for photoelectrochemical water splitting: a review of current progress and challenges, Nanoscale Horizons, 1 (2016) 243-267. https://doi.org/10.1039/C5NH00098J
  14. K. Sivula, F. Le Formal, M. Gratzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes, ChemSusChem, 4 (2011) 432-449. https://doi.org/10.1002/cssc.201000416
  15. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Gratzel, Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach, Journal of the American Chemical Society, 132 (2010) 7436-7444. https://doi.org/10.1021/ja101564f
  16. H.E. Prakasam, O.K. Varghese, M. Paulose, G.K. Mor, C.A. Grimes, Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization, Nanotechnology, 17 (2006) 4285.
  17. M. Rioult, D. Stanescu, E. Fonda, A. Barbier, H. Magnan, Oxygen vacancies engineering of iron oxides films for solar water splitting, The Journal of Physical Chemistry C, 120 (2016) 7482-7490. https://doi.org/10.1021/acs.jpcc.6b00552
  18. J.H. Kennedy, K.W. Frese, Photooxidation of water at α-Fe2O3 electrodes, Journal of the Electrochemical Society, 125 (1978) 709.
  19. N. J. Cherepy, D. B. Liston, J. A. Lovejoy, H. Deng, J. Zhang, Ultrafast studies of photoexcited electron dynamics in γ-and α-Fe2O3 semiconductor nanoparticles, The Journal of Physical Chemistry B, 102 (1998) 770-776. https://doi.org/10.1021/jp973149e
  20. R. Gardner, F. Sweett, D. Tanner, The electrical properties of alpha ferric oxide-II.: Ferric oxide of high purity, Journal of Physics and Chemistry of Solids, 24 (1963) 1183-1196. https://doi.org/10.1016/0022-3697(63)90235-X
  21. S. K. Mohapatra, S. E. John, S. Banerjee, M. Misra, Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays, Chemistry of Materials, 21 (2009) 3048-3055. https://doi.org/10.1021/cm8030208
  22. A. Samanta, S. Das, S. Jana, Doping of Ni in α-Fe2O3 nanoclews to boost oxygen evolution electrocatalysis, ACS Sustainable Chemistry & Engineering, 7 (2019) 12117-12124.
  23. Y. Gao, N. Zhang, C. Wang, F. Zhao, Y. Yu, Construction of Fe2O3@ CuO heterojunction nanotubes for enhanced oxygen evolution reaction, ACS Applied Energy Materials, 3 (2019) 666-674. https://doi.org/10.1021/acsaem.9b01866
  24. S. Shen, S. A. Lindley, X. Chen, J. Z. Zhang, Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics, Energy & Environmental Science, 9 (2016) 2744-2775. https://doi.org/10.1039/C6EE01845A
  25. S. C. Warren, K. Voitchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hebert, A. Rothschild, M. Gratzel, Identifying champion nanostructures for solar watersplitting, Nature Materials, 12 (2013) 842-849. https://doi.org/10.1038/nmat3684
  26. P. S. Shinde, A. Annamalai, J. Y. Kim, S. H. Choi, J. S. Lee, J. Jang, Fine-tuning pulse reverse electrodeposition for enhanced photoelectrochemical water oxidation performance of α-Fe2O3 photoanodes,The Journal of Physical Chemistry C, 119 (2015) 5281-5292. https://doi.org/10.1021/jp5100186
  27. L. Xi, P. S. Bassi, S. Y. Chiam, W. F. Mak, P.D. Tran, J. Barber, J.S.C. Loo, L.H. Wong, Surface treatment of hematite photoanodes with zinc acetate for water oxidation, Nanoscale, 4 (2012) 4430-4433. https://doi.org/10.1039/c2nr30862b
  28. J.Y. Kim, G. Magesh, D.H. Youn, J.W. Jang, J. Kubota, K. Domen, J. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting, Scientific Reports, 3 (2013) 2681.
  29. H.J. Ahn, A. Goswami, F. Riboni, S. Kment, A. Naldoni, S. Mohajernia, R. Zboril, P. Schmuki, Hematite photoanode with complex nanoarchitecture providing tunable gradient doping and low onset potential for photoelectrochemical water splitting, ChemSusChem, 11 (2018) 1873-1879. https://doi.org/10.1002/cssc.201800256
  30. S. Kment, P. Schmuki, Z. Hubicka, L. Machala, R. Kirchgeorg, N. Liu, L. Wang, K. Lee, J. Olejnicek, M. Cada, Photoanodes with fully controllable texture: the enhanced water splitting efficiency of thin hematite films exhibiting solely (110) crystal orientation, ACS Nano, 9 (2015) 7113-7123. https://doi.org/10.1021/acsnano.5b01740
  31. S. Kment, Z. Hubicka, J. Krysa, D. Sekora, M. Zlamal, J. Olejnicek, M. Cada, P. Ksirova, Z. Remes, P. Schmuki, On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method, Applied Catalysis B: Environmental, 165 (2015) 344-350. https://doi.org/10.1016/j.apcatb.2014.10.015
  32. Y. Ling, G. Wang, J. Reddy, C. Wang, J.Z. Zhang, Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires, Angewandte Chemie, 124 (2012) 4150-4155. https://doi.org/10.1002/ange.201107467
  33. S. Grigorescu, C.Y. Lee, K. Lee, S. Albu, I. Paramasivam, I. Demetrescu, P. Schmuki, Thermal air oxidation of Fe: rapid hematite nanowire growth and photoelectrochemical water splitting performance, Electrochemistry Communications, 23 (2012) 59-62. https://doi.org/10.1016/j.elecom.2012.06.038
  34. J. Moir, N. Soheilnia, K. Liao, P. O'Brien, Y. Tian, K.S. Burch, G.A. Ozin, Activation of ultrathin films of hematite for photoelectrochemical water splitting via H2 treatment, ChemSusChem, 8 (2015) 1557-1567. https://doi.org/10.1002/cssc.201402945
  35. M. Li, J. Deng, A. Pu, P. Zhang, H. Zhang, J. Gao, Y. Hao, J. Zhong, X. Sun, Hydrogentreated hematite nanostructures with low onset potential for highly efficient solar water oxidation, Journal of Materials Chemistry A, 2 (2014) 6727-6733. https://doi.org/10.1039/c4ta00729h
  36. Y. Makimizu, N.T. Nguyen, J. Tucek, H.J. Ahn, J. Yoo, M. Poornajar, I. Hwang, S. Kment, P. Schmuki, Activation of α-Fe2O3 for Photoelectrochemical Water Splitting Strongly Enhanced by Low Temperature Annealing in Low Oxygen Containing Ambient, Chemistry A European Journal, 26 (2020) 2685-2692. https://doi.org/10.1002/chem.201904430
  37. Y. Makimizu, J. Yoo, M. Poornajar, N.T. Nguyen, H.J. Ahn, I. Hwang, S. Kment, P. Schmuki, Effects of low oxygen annealing on the photoelectrochemical water splitting properties of α-Fe2O3, Journal of Materials Chemistry A, 8 (2020) 1315-1325. https://doi.org/10.1039/C9TA10358A
  38. F. Malara, A. Minguzzi, M. Marelli, S. Morandi, R. Psaro, V. Dal Santo, A. Naldoni, α-Fe2O3/NiOOH: an effective heterostructure for photoelectrochemical water oxidation, ACS Catalysis, 5 (2015) 5292-5300. https://doi.org/10.1021/acscatal.5b01045