DOI QR코드

DOI QR Code

Synthesis and characterization of NiFe2O4 nanoparticle electrocatalyst for urea and water oxidation

요소 산화반응을 위한 NiFe2O4 나노파티클 촉매 합성 및 특성 분석

  • Ki-Yong Yoon (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Kyung-Bok Lee (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Dohyung Kim (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Hee Yoon Roh (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Sung Mook Choi (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Ji-hoon Lee (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Jaehoon Jeong (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS)) ;
  • Juchan Yang (Department of Hydrogen Energy Materials, Korea Institute of Materials Science (KIMS))
  • 윤기용 (한국재료연구원 그린수소재료연구실) ;
  • 이경복 (한국재료연구원 그린수소재료연구실) ;
  • 김도형 (한국재료연구원 그린수소재료연구실) ;
  • 노희윤 (한국재료연구원 그린수소재료연구실) ;
  • 최승목 (한국재료연구원 그린수소재료연구실) ;
  • 이지훈 (한국재료연구원 그린수소재료연구실) ;
  • 정재훈 (한국재료연구원 그린수소재료연구실) ;
  • 양주찬 (한국재료연구원 그린수소재료연구실)
  • Received : 2023.06.23
  • Accepted : 2023.08.22
  • Published : 2023.08.31

Abstract

Urea oxidation reaction (UOR) via electrochemical oxidation process can replace oxygen evolution reaction (OER) for green hydrogen production since UOR has lower thermodynamic potential (0.37 VRHE) than that of OER (1.23 VRHE). However, in the case of UOR, 6 electrons are required for the entire UOR. For this reason, the reaction rate is slower than OER, which requires 4 electrons. In addition, it is an important challenge to develop catalysts in which both oxidation reactions (UOR and OER) are active since the active sites of OER and UOR are opposite to each other. We prove that among the NiFe2O4 nanoparticles synthesized by the hydrothermal method at various synthesis temperatures, NiFe2O4 nanoparticle with properly controlled particle size and crystallinity can actively operate OER and UOR at the same time.

Keywords

Acknowledgement

본 성과물은 농촌진흥청 연구사업 (과제번호:PJ016253012021)의 지원을 받아 수행된 연구임.

References

  1. W. Simka, J. Piotrowski, G. Nawrat, Influence of anode material on electrochemical decomposition of urea, Electrochimica Acta, 52 (2007) 5696-5703. https://doi.org/10.1016/j.electacta.2006.12.017
  2. K. Ye, G. Wang, D. Cao, G. Wang, Recent advances in the electrO-oxidation of urea for of urea for direct urea fuel cell and urea electrolysis, Topics in Current Chemistry, 376 (2018) 42.
  3. T. V. M. Sreekanth, G. R. Dillip, X. Wei, K. Yoo, J. Kim, Binder free Ni/NiO electro-catalysts for urea oxidation reaction, Materials Letters, 327 (2022) 133038.
  4. X. Ji, Y. Zhang, Z. Ma, Y. Qiu, Oxygen vacancy-rich Ni/NiO@NC nanosheets with schottky heterointerface for efficient urea oxidation reaction, ChemSusChem, 13 (2020) 5004-5014. https://doi.org/10.1002/cssc.202001185
  5. Y. Xu, X. Chai, T. Ren, S. Yu, H. Yu, Z. Wang, X. Li, L. Wang, H. Wang, Ir-Doped Ni-based metal-organic framework ultrathin nanosheets on Ni foam for enhanced urea electrO-oxidation, Chemical Communications, 56 (2020) 2151-2154. https://doi.org/10.1039/C9CC09484A
  6. X. Huang, R. He, S. Wang, Y. Yang, L. Feng, High-valent Ni species induced by inactive MoO2 for efficient urea oxidation reaction, Inorganic Chemistry, 61 (2022) 18318-18324. https://doi.org/10.1021/acs.inorgchem.2c03498
  7. L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui, F. Ni, Y. Liu, H. Lin, Y. Li, H. Peng, B. Zhang, Regulating the local charge distribution of Ni active sites for the urea oxidation reaction, Angewandte Chemie International Edition, 60 (2021) 10577-10582. https://doi.org/10.1002/anie.202100610
  8. T. Mushiana, M. Khan, M. I. Abdullah, N. Zhang, M. Ma, Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea, Nano Research, 15 (2022) 5014-5023. https://doi.org/10.1007/s12274-022-4186-9
  9. H. Zhang, X. Meng, J. Zhang, Y. Huang, Hierarchical NiFe hydroxide/Ni3N nanosheet-on-nanosheet heterostructures for bifunctional oxygen evolution and urea oxidation reactions, ACS Sustainable Chemistry & Engineering, 9 (2021) 12584-12590. https://doi.org/10.1021/acssuschemeng.1c03353
  10. Y. C. Zhang, C. Han, J. Gao, J. Wu, X. D. Zhu, J. J. Zou, Co3-xO4/NiO with abundant Ni3+ active sites for boosting oxygen evolution reaction, Chemical Engineering Journal, 446 (2022) 137036.
  11. R. Lin, L. Kang, T. Zhao, J. Feng, V. Celorrio, G. Zhang, G. Cibin, A. Kucernak, D. J. L. Brett, F. Cora, I. P. Parkin, G. He, Identification and manipulation of dynamic active site deficiencyinduced competing reactions in electrocatalytic oxidation processes, Energy & Environmental Science, 15 (2022) 2386.
  12. S. J. Geng, Y. Zheng, S. Q. Li, H. Su, X. Zhao, J. Hu, H. B. Shu, M. Jaroniec, P. Chen, Q. H. Liu, S. Z. Qiao, Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst, Nature Energy, 6 (2021) 904-912. https://doi.org/10.1038/s41560-021-00899-2
  13. X. Liu, Z. Y. Zhai, Z. Chen, L.Z. Zhang, X. F. Zhao, F. Z. Si, J. H. Li, Engineering mesoporous NiO with enriched electrophilic Ni3+ and O- toward efficient oxygen evolution, Catalysts, 8 (2018) 310.