References
- J. W. Hyun, J. D. Byun, Y. J. Kim, G. B. Kim, K. A. Lee, Ferroelectric and Dielectric Properties of the Pb(Sc1/2Nb1/2) O3 Ceramic System, Journal of the Korean Physical Society, 57 (2010) 485-488. https://doi.org/10.3938/jkps.57.485
- J. L. Tang, M. K. Zhu, Y. D. Hou, H. Wang, H. Yan, Effect of pH value on phase structure, component, and grain morphology of Pb(Sc1/2Nb1/2)O3 powders by precipitation method, Journal of Crystal Growth, 307 (2007) 70-75. https://doi.org/10.1016/j.jcrysgro.2007.06.002
- F. Chu, I. M. Reaney, N. Setter, Spontaneous (zero-field) relaxor to ferroelectric phase ransition in disordered Pb(Sc1/2Nb1/2)O3, Journal of Applied Physics, 77 (1995) 1671-1676. https://doi.org/10.1063/1.358856
- A. A. Bokov, Z. G. Ye, Dielectric relaxation in relaxor ferroelectrics, Journal of Advanced Dielectrics, 2 (2012) 1-24.
- C. Zhao, C. Z. Zhao, M. Werner, S. Taylor, P. Chalker, Dielectric relaxation of high-k oxides, Nanoscale Research Letters, 8 (2013) 456-474. https://doi.org/10.1186/1556-276X-8-456
- J. W. Hyun, J. D. Byun, Y. J. Kim, Raman and dielectric spectroscopy in the disordered Pb(Sc1/2Nb1/2)O3 relaxor fabricated by one-step mixed oxide method, Journal of the Korean Physical Society, 66 (2015) 1057-1061. https://doi.org/10.3938/jkps.66.1057
- A. Chen, J. F. Scott, Y. Zhi, H. Ledbetter, J. L. Baptista, Dielectric and ultrasonic anomalies at 22K, 37K and 65K in SrTiO3, Physical Review B, 59 (1999) 6661-6668. https://doi.org/10.1103/PhysRevB.59.6661
- J. M. Kiat, C. Bogicevic, F. Karolak, G. Dezanneau, N. Guiblin, W. Ren, L. Bellaiche, R. Haumont, Low-symmetry phases and loss of relaxation in nanosized lead scandium niobate, Physical Review B, 81 (2010) 144122.
- R. Padhee, P. R. Das, B. N. Parida, R. N. P. Choudhary, Impedance analysis of K2Pb2X2W2Ti4Nb2O30 (X=Nd, Y) tungsten bronze ceramics, Journal of the Korean Physical Society, 64 (2014) 1022-1030. https://doi.org/10.3938/jkps.64.1022
- X. Li, X. Fan, Z. Xi, P. Liu, W. Long, P. Fang, F. Guo, R. Nan, Dielectric relaxor and conductivity mechanism in Fe-substituted PMN-32PT ferroelectric crystal, Crystals, 9(5) (2019) 241-247. https://doi.org/10.3390/cryst9050241
- R. Das, R.N.P. Choudhary, Solid State Sciences, Studies of structural, dielectric relaxor and electrical characteristics of lead-free double Perovskite:Gd2NiMnO6, Solid State Sciences, 87 (2019) 1-8. https://doi.org/10.1016/j.solidstatesciences.2018.10.020
- Z. Raddaoui, S. E. Kossi, J. Dhahri, N. Abdelmoula, K. Taibi, Study of diffuse phase transition and relaxor ferroelectric behavior of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 ceramic, RSC Advances, 9 (2019) 2412-2425. https://doi.org/10.1039/C8RA08910H
- W. Dong, B.X. Wang, Y. Yuan, H. Wu, A. A. Bokov, Z.G. Ye, Synthesis, structural evolution, and dielectric properties of a new perovskite solid solution (Pb0.5Sr0.5) (Zr0.5Ti0.5)O3-PbTiO3, Journal of the American Ceramic Society, 105 (2022) 4775-4783. https://doi.org/10.1111/jace.18449
- C. J. Chang, X. Qi, Dielectric relaxation and high recoverable energy density in (1-x)(0.3BiFeO3-0.7SrTiO3)-xK0.5Na0.5NbO3 ceramics, Ceramics International, 48 (2022) 25610-25620. https://doi.org/10.1016/j.ceramint.2022.05.240
- S. Singh, A. Kaur, P. Kaur and L. Singh, High-temperature dielectric relaxation and electric conduction mechanisms in a LaCoO3-modified Na0.5Bi0.5TiO3 system, ACS Omega, 8 (2023) 25623-25638.