DOI QR코드

DOI QR Code

An overview of Hawkes processes and their applications

혹스 과정의 개요 및 응용

  • Mijeong Kim (Department of Statistics, Ewha Womans University)
  • 김미정 (이화여자대학교 통계학과)
  • Received : 2023.02.01
  • Accepted : 2023.03.13
  • Published : 2023.08.31

Abstract

The Hawkes process is a point process with self-exciting characteristics. It has been mainly used to describe seismic phenomena in which aftershocks occur due to the main earthquake. Recently, it has been used to explain various phenomena with self-exciting properties, such as the spread of infectious diseases and the spread of news on SNS. The Hawkes process can be flexibly modified according to the characteristics of events by using various types of excitation functions. Since it is difficult to implement a maximum likelihood estimator numerically, estimation methods have been improved until recently. In this paper, the conditional intensity function and excitation function are explained to describe the Hawkes process. Then, existing examples of Hawkes processes used in seismic, epidemiological, criminal, and financial fields are described and estimation methods are introduced. I analyze earthquakes that occurred in gyeongsang-do, Korea from November 2017 to December 2022, using R package ETAS.

혹스 과정은 자기 자극 특성을 가진 점 과정으로서, 지진 발생시 본진으로 인한 여진이 발생되는 현상을 설명하는 데 주로 쓰이는 확률 모형이다. 최근에는 전염병 확산, SNS에서의 소식 확산 등 자기 자극을 특성을 가진 다양한 현상을 설명하는 데 활용되고 있다. 혹스 과정은 다양한 형태의 자극 함수를 도입하여 발생하는 사건의 특성에 따라 유연하게 변형이 가능한데, 최대 우도 추정량을 구하는 것이 쉽지 않기 때문에 최근까지도 개선된 추정 방법이 제시되고 있다. 이 논문에서는 혹스 과정을 설명하기 위해 조건부 강도 함수와 자극 함수에 대해 설명하고, 지진, 전염병, 범죄 및 금융에서 활용되었던 예와 추정 방법을 알아보도록 한다. R-패키지 ETAS를 이용하여 2017년 11월부터 2022년 12월까지 한국 경상도에서 발생한 지진을 분석하도록 한다.

Keywords

Acknowledgement

이 논문은 연구재단 연구 과제 NRF-2020R1F1A1A01074157에 의하여 수행되었음.

References

  1. Abergel F and Jedidi A (2015). Long-time behavior of a hawkes process-based limit order book, SIAM Journal on Financial Mathematics, 6, 1026-1043. https://doi.org/10.1137/15M1011469
  2. Bacry E, Dayri K, and Muzy JF (2012). Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data, The European Physical Journal B, 85, 1-12. https://doi.org/10.1140/epjb/e2011-20818-1
  3. Bacry E and Muzy JF (2016). First-and second-order statistics characterization of Hawkes processes and nonparametric estimation, IEEE Transactions on Information Theory, 62, 2184-2202. https://doi.org/10.1109/TIT.2016.2533397
  4. Bowsher CG (2007). Modelling security market events in continuous time: Intensity based, multivariate point process models, Journal of Econometrics, 141, 876-912. https://doi.org/10.1016/j.jeconom.2006.11.007
  5. Daley DJ and Vere-Jones D (2003). An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods, Springer, New York.
  6. Daley DJ and Vere-Jones D (2008). An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure, Springer, New York.
  7. Egesdal M, Fathauer C, Louie K, Neuman J, Mohler G, and Lewis E (2010). Statistical and stochastic modeling of gang rivalries in Los Angeles, SIAM Undergraduate Research Online, 3, 72-94. https://doi.org/10.1137/09S010459
  8. Gao X and Zhu L (2018). Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues, Queueing Systems, 90, 161-206. https://doi.org/10.1007/s11134-018-9570-5
  9. Hawkes AG (1971). Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58, 83-90. https://doi.org/10.1093/biomet/58.1.83
  10. Hawkes AG (2018). Hawkes processes and their applications to finance: A review, Quantitative Finance, 18, 193-198. https://doi.org/10.1080/14697688.2017.1403131
  11. Hawkes AG and Oakes D (1974). A cluster process representation of a self-exciting process, Journal of Applied Probability, 11, 493-503. https://doi.org/10.2307/3212693
  12. Mohler GO, Short MB, Brantingham PJ, Schoenberg FP, and Tita GE (2011). Self-exciting point process modeling of crime, Journal of the American Statistical Association, 106, 100-108. https://doi.org/10.1198/jasa.2011.ap09546
  13. Ogata Y (1988). Statistical models for earthquake occurrences and residual analysis for point processes, Journal of the American Statistical Association, 83, 9-27. https://doi.org/10.1080/01621459.1988.10478560
  14. Ogata Y (1998). Space-time point-process models for earthquake occurrences, Annals of the Institute of Statistical Mathematics, 50, 379-402. https://doi.org/10.1023/A:1003403601725
  15. Ogata Y and Katsura K (1988). Likelihood analysis of spatial inhomogeneity for marked point patterns, Annals of the Institute of Statistical Mathematics, 40, 29-39. https://doi.org/10.1007/BF00053953
  16. Omi T, Ogata Y, Hirata Y, and Aihara K (2015). Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches, Journal of Geophysical Research: Solid Earth, 120, 2561-2578. https://doi.org/10.1002/2014JB011456
  17. Rambaldi M, Bacry E, and Lillo F (2017). The role of volume in order book dynamics: A multivariate Hawkes process analysis, Quantitative Finance, 17, 999-1020. https://doi.org/10.1080/14697688.2016.1260759
  18. Rasmussen JG (2013). Bayesian inference for Hawkes processes, Methodology and Computing in Applied Probability, 15, 623-642. https://doi.org/10.1007/s11009-011-9272-5
  19. Rizoiu MA, Mishra S, Kong Q, Carman M, and Xie L (2018). SIR-Hawkes: Linking epidemic models and Hawkes processes to model diffusions in finite populations, In Proceedings of the 2018 world wide web conference, Lyon, France, 419-428.
  20. Ross GJ (2021). Bayesian estimation of the ETAS model for earthquake occurrences, Bulletin of the Seismological Society of America, 111, 1473-1480. https://doi.org/10.1785/0120200198
  21. Unwin HJT, Routledge I, Flaxman S et al. (2021). Using Hawkes processes to model imported and local malaria cases in near-elimination settings, PLoS Computational Biology, 17, e1008830.
  22. Utsu T (1961). A statistical study of the occurrence of aftershocks, Geophysical Magazine, 30, 521-605.
  23. Utsu T and Ogata Y (1995). The centenary of the Omori formula for a decay law of aftershock activity, Journal of Physics of the Earth, 43, 1-33. https://doi.org/10.4294/jpe1952.43.1
  24. Veen A and Schoenberg FP (2008). Estimation of space-time branching process models in seismology using an em-type algorithm, Journal of the American Statistical Association, 103, 614-624. https://doi.org/10.1198/016214508000000148
  25. Zhuang J, Ogata Y, and Vere-Jones D (2002). Stochastic declustering of space-time earthquake occurrences, Journal of the American Statistical Association, 97, 369-380.  https://doi.org/10.1198/016214502760046925