DOI QR코드

DOI QR Code

임계 HAR 모형을 이용한 실현 변동성 분석

Threshold heterogeneous autoregressive modeling for realized volatility

  • 문세인 (성균관대학교 통계학과) ;
  • 박민수 (성균관대학교 통계학과) ;
  • 백창룡 (성균관대학교 통계학과)
  • Sein Moon (Department of Statistics, Sungkyunkwan University) ;
  • Minsu Park (Department of Statistics, Sungkyunkwan University) ;
  • Changryong Baek (Department of Statistics, Sungkyunkwan University)
  • 투고 : 2023.02.01
  • 심사 : 2023.03.21
  • 발행 : 2023.08.31

초록

HAR 모형은 간단한 선형 모형으로 실현 변동성의 장기기억성을 비교적 잘 설명할 수 있어 널리 쓰이고 있다. 하지만, 실현 변동성은 조건부 이분산성, 레버리지 효과, 변동성 집중 등과 같은 복잡한 특징을 보이고 있기에 단순 HAR 모형을 확장할 필요가 있다. 따라서 본 연구는 조건부 이분산성을 설명하는 GARCH 모형에 임계값에 따라 계수가 달라지는 비선형 모형인 임계 HAR 모형(THAR-GARCH)을 제안하고 그 추정 방법 및 예측 성능에 대해서 살펴보고자 한다. 보다 구체적으로 오차항의 등분산 가정을 벗어났기 때문에 모형의 계수를 추정하기 위해서 반복적인 가중최소제곱추정법을 제안하고 모의실험을 통해 일치성을 보였다. 또한 전세계 21개의 주요 주가 지수의 실현 변동성에 대한 예측 오차를 비교함으로써 제안한 GARCH 오차를 가지는 임계 HAR 모형이 일반적으로 더 우수한 예측력을 보임을 확인하였다.

The heterogeneous autoregressive (HAR) model is a simple linear model that is commonly used to explain long memory in the realized volatility. However, as realized volatility has more complicated features such as conditional heteroscedasticity, leverage effect, and volatility clustering, it is necessary to extend the simple HAR model. Therefore, to better incorporate the stylized facts, we propose a threshold HAR model with GARCH errors, namely the THAR-GARCH model. That is, the THAR-GARCH model is a nonlinear model whose coefficients vary according to a threshold value, and the conditional heteroscedasticity is explained through the GARCH errors. Model parameters are estimated using an iterative weighted least squares estimation method. Our simulation study supports the consistency of the iterative estimation method. In addition, we show that the proposed THAR-GARCH model has better forecasting power by applying to the realized volatility of major 21 stock indices around the world.

키워드

과제정보

이 논문은 한국연구재단의 지원을 받아 수행된 기초연구 사업임 (NRF-2022R1F1A1066209).

참고문헌

  1. Andersen TG, Bollerslev T, Diebold FX, and Labys P (2003). Modeling and forecasting realized volatility, Econometrica, 71, 579-625. https://doi.org/10.1111/1468-0262.00418
  2. Barndorff-Nielsen OE, Hansen PR, Lunde A, and Shephard N (2008). Designing realized kernels to measure the ex post variation of equity prices in the presence of noise, Econometrica, 76, 1481-1536. https://doi.org/10.3982/ECTA6495
  3. Brooks C and Persand G (2003). Volatility forecasting for risk management, Journal of Forecasting, 22, 1-22. https://doi.org/10.1002/for.841
  4. Corsi F (2009). A simple approximate long-memory model of realized volatility, Journal of Financial Econometrics, 7, 174-196. https://doi.org/10.1093/jjfinec/nbp001
  5. Corsi F, Mittnik S, Pigorsch C, and Pigorsch U (2008). The volatility of realized volatility, Econometric Reviews, 27, 46-78. https://doi.org/10.1080/07474930701853616
  6. Hansen PR and Lunde A (2005). A forecast comparison of volatility models: Does anything beat a GARCH (1, 1)?, Journal of Applied Econometrics, 20, 873-889. https://doi.org/10.1002/jae.800
  7. Hwang E and Hong WT (2021). A multivariate HAR-RV model with heteroscedastic errors and its WLS estimation, Economics Letters, 203, 109855.
  8. Jawadi F, Ftiti Z, and Louhichi W (2020). Forecasting energy futures volatility with threshold augmented heterogeneous autoregressive jump models, Econometric Reviews, 39, 54-70. https://doi.org/10.1080/07474938.2019.1690190
  9. Kim SJ and Yoon SJ (2015). Institutional investors' volatility trading in the kospi 200 options market, The Korean Journal of Financial Management, 32, 1-33. https://doi.org/10.22510/kjofm.2015.32.1.001
  10. Lim K and Tong H (1980). Threshold autoregressions, limit cycles, and data, Journal of the Royal Statistical Sociaty, B, 42, 245-92. https://doi.org/10.1111/j.2517-6161.1980.tb01126.x
  11. Motegi K, Cai X, Hamori S, and Xu H (2020). Moving average threshold heterogeneous autoregressive (mat-har) models, Journal of Forecasting, 39, 1035-1042. https://doi.org/10.1002/for.2671
  12. Pypko S (2015). Volatility forecast in crises and expansions, Journal of Risk and Financial Management, 8, 311-336. https://doi.org/10.3390/jrfm8030311
  13. Tong H (1978). On a threshold model, In Chen C (Eds), Pattern Recognition and Signal Processing (pp. 575-586), Sijthoff & Noordhoff, Netherlands.