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MDS SELF-DUAL CODES OVER GALOIS RINGS WITH

EVEN CHARACTERISTIC

Sunghyu Han

Abstract. Let GR(2m, r) be a Galois ring with even characteris-
tic. We are interested in the existence of MDS(Maximum Distance
Separable) self-dual codes over GR(2m, r). In this paper, we prove
that there exists an MDS self-dual code over GR(2m, r) with pa-
rameters [n, n/2, n/2 + 1] if (n− 1) | (2r − 1) and 8 | n.

1. Introduction

Let R = GR(pm, r) be a Galois ring. We are interested in the exis-
tence of MDS(Maximum Distance Separable) self-dual codes over R. If
m = 1, then R = GR(p, r) is the finite field Fpr . MDS self-dual codes
over finite fields are studied extensively. If p = 2 then we have the
following result.

Theorem 1.1. [5, Theorem 3] For R = GR(2, r) = F2r , there exist
an MDS self-dual code C = [2k, k, k + 1] over R for all k = 1, · · · , 2r−1.

If MDS conjecture over finite fields [9, Section 7.4] is true, then the
research for F2r is completed. For odd prime p, there are many research
papers for MDS self-dual codes over Fpr (see [3] as an example) and the
research has not been completed.

MDS self-dual codes over Galois rings are studied [7]. If p is odd,
then the existence of MDS self-dual codes over GR(pm, r) is equivalent
to those over Fpr [7, Theorem 3.8, Theorem 3.9]. In other words, if we
have an MDS self-dual code over GR(pm, r), then we can make an MDS
self-dual code over Fpr using the canonical projection map. Conversely,
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if we have an MDS self-dual code over Fpr , then we can make an MDS
self-dual code over GR(pm, r) using lifting process.

If p is even, then the projection map is still working but the lifting
process can not be applied. Therefore the study of MDS self-dual codes
over Galois rings with even characteristic is not easy. This paper is all
about MDS self-dual codes over GR(2m, r). If m = 1, GR(2m, r) = Fr

2.
Therefore the research is done by Theorem 1.1. We assume that m ≥ 2.
There are some results for this case.

Theorem 1.2. [7, Theorem 4.5, Theorem 4.6] For Galois ring R =
GR(2m, r), we have the following:

1. If m ≥ 2, then there is no MDS self-dual code over R for length
n ≡ 2 (mod 4).

2. If m ≥ 2 and r is odd, then there is no [4, 2, 3] MDS self-dual code
over R.

3. If m ≥ 2 and r is even, then there exist a [4, 2, 3] MDS self-dual
code over R.

Theorem 1.3. [8, Theorem 3.4] Let R = GR(2m, r), and n be a
positive integer such that (n−1) | (2r−1) and 2m | n. Then there exists
an MDS self-dual code over R with parameters [n, n/2, n/2 + 1].

The purpose of this paper is to develop Theorem 1.3. We replace the
condition 2m | n of Theorem 1.3 with 8 | n. Therefore the main result of
this paper is the following. We prove that there exists an MDS self-dual
code over GR(2m, r) with parameters [n, n/2, n/2+1] if (n−1) | (2r−1)
and 8 | n.

This paper is organized as follows. In Section 2, we provide basic facts
for Galois rings, linear codes, MDS codes, self-dual codes, generalized
Reed-Solomon codes, and the stronger version of Hensel’s lemma. In
Section 3, we describe our main results, which are about the existence
of MDS self-dual codes over Galois rings. In Section 4, we summarize
this paper and give some future works.

2. Preliminaries

2.1. Galois rings

In this subsection, we present some well-known facts about Galois
rings (see [15] as an example). Let p be a fixed prime and m be a
positive integer. First, we consider the following canonical projection

(2.1) µ : Zpm → Zp
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which is defined by

(2.2) µ(c) = c (mod p).

The map µ can be extended naturally to the following map

(2.3) µ : Zpm [x] → Zp[x]

which is defined by

(2.4) µ(a0x+ a1x+ · · ·+ anx
n) = µ(a0) + µ(a1)x+ · · ·+ µ(an)x

n.

This extended µ is a ring homomorphism with kernel (p).
Let f(x) be a polynomial in Zpm [x]. Then, f(x) is called basic irre-

ducible if µ(f(x)) is irreducible. A Galois ring is constructed as

(2.5) GR(pm, r) = Zpm [x]/(f(x)),

where f(x) is a monic basic irreducible polynomial in Zpm [x] of degree
r. The elements of GR(pm, r) are residue classes of the form

(2.6) a0 + a1x+ · · ·+ ar−1x
r−1 + (f(x)),

where ai ∈ Zpm , (0 ≤ i ≤ r − 1).
A polynomial h(x) in Zpm [x] is called a basic primitive polynomial

if µ(h(x)) is a primitive polynomial. It is a well-known fact that there
is a monic basic primitive polynomial h(x) of degree r over Zpm and
h(x)|(xpr−1 − 1) in Zpm [x]. Let h(x) be a monic basic primitive polyno-
mial in Zpm [x] of degree r and h(x)|(xpr−1 − 1). Consider the following
element

(2.7) ξ = x+ (h(x)) ∈ GR(pm, r) = Zpm [x]/(h(x)).

The order of ξ is pr − 1. Teichmüller representatives are defined as
follows.

(2.8) T = {0, 1, ξ, ξ2, . . . , ξpr−2}.
Every element t ∈ GR(pm, r) can be uniquely represented by the form

(2.9) t = t0 + pt1 + p2t2 + · · ·+ pm−1tm−1,

where ti ∈ T, (0 ≤ i ≤ m−1). Moreover, t is a unit if and only if t0 ̸= 0,
and t is a zero divisor or 0 if and only if t0 = 0.

The Galois ring R = GR(pm, r) is a local ring with a unique maximal
ideal M = (p). The canonical projection map is defined by

: R → R/M

r → r = r +M.

It is known that ξ is a primitive element in R/M(= Fpr).
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2.2. Linear codes over GR(pm, r)

A linear code C of length n overGR(pm, r) is a submodule ofGR(pm, r)n,
and the elements in C are called codewords. The distance d(u,v) be-
tween two elements u,v ∈ GR(pm, r)n is the number of coordinates
in which u,v differ. The minimum distance of a code C is the small-
est distance between distinct codewords. The weight of a codeword
c = (c1, c2, · · · , cn) in C is the number of nonzero cj . The minimum
weight of C is the smallest nonzero weight of any codeword in C. If C
is a linear code, then the minimum distance and the minimum weight
are the same.

A generator matrix for a linear code C over GR(pm, r) is permutation
equivalent to the following one in the standard form [12, 13]:
(2.10)

G =


Ik0 A0,1 A0,2 A0,3 · · · A0,m−1 A0,m

0 pIk1 pA1,2 pA1,3 · · · pA1,m−1 pA1,m

0 0 p2Ik2 p2A2,3 · · · p2A2,m−1 p2A2,m
...

...
...

...
...

...
0 0 0 0 · · · pm−1Ikm−1 pm−1Am−1,m

 ,

where the columns are grouped into square blocks of sizes k0, k1, . . . , km−1.
The rank of C, denoted by rank(C), is defined to be the number of
nonzero rows of its generator matrix G in a standard form. Therefore
rank(C) =

∑m−1
i=0 ki. We call k0 in G the free rank of a code C. If

rank(C) = k0, then C is called a free code. We say C is an [n, k, d]
linear code, if the code length is n, the rank of C is k, and the minimum
weight of C is d. In this paper, we assume that all codes are linear unless
we state otherwise.

2.3. MDS codes

It is known (see [11] as an example) that for a (linear or nonlinear)
code C of length n over any finite alphabet A,

(2.11) d ≤ n− log|A|(|C|) + 1.

Codes meeting this bound are called MDS codes. Further, if C is a linear
code over a ring, then

(2.12) d ≤ n− rank(C) + 1.

Codes meeting this bound are called maximum distance with respect to
rank (MDR) codes [2, 13]. The following lemma states the necessary
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and sufficient condition for MDS codes over Galois rings (see [6] as an
example).

Lemma 2.1. Let C be a linear code over GR(pm, r). Then, C is MDS
if and only if C is MDR and free.

2.4. Self-dual codes

We define the usual inner product: for x,y ∈ GR(pm, r)n,

(2.13) x · y = x1y1 + · · ·+ xnyn.

For a code C of length n over GR(pm, r), let

(2.14) C⊥ = {x ∈ GR(pm, r)n
∣∣x · c = 0, ∀ c ∈ C}

be the dual code of C. If C ⊆ C⊥, we say that C is self-orthogonal, and
if C = C⊥, then C is self-dual. If a self-dual code C is MDS then C is
called an MDS self-dual code.

2.5. Generalized Reed-Solomon codes over GR(pm, r)

In this subsection, we describe generalized Reed-Solomon codes over
R = GR(pm, r) [13, 14]. We start with the following definition (see [13,
Definition 2.2], [14, Definition 5] as examples).

Definition 2.2. Let R = GR(pm, r). A subset S of R is subtractive
if s− t is unit for all s, t ∈ S with s ̸= t.

Lemma 2.3. ([13, Lemma 2.5, Corollary 2.6]) Let R be a finite local
ring, M be the maximal ideal of R, and K = R/M the residue field.
For an element r ∈ R, we denote by y its image under the canonical
projection from R onto K. Then we have the following.

1. For r, r′ ∈ R, r ̸= r′ if and only if r − r′ is a unit of R.
2. For S ⊆ R, |S| = |S| if and only if S is subtractive.

Lemma 2.4. Let R = GR(pm, r) and T = {0, 1, ξ, ξ2, . . . , ξpr−2} be
the set of the Teichmüller representatives of R. Then we have the fol-
lowing.

1. If A ⊆ T , then A is subtractive.
2. For B ⊆ R, if B is subtractive then |B| ≤ |T |.

Proof. We know that R/(p) = Fpr , where (p) is the unique maximal

ideal of R, and ξ is a primitive element of Fpr . Therefore T = Fpr ,

|T | = |T |, and |A| = |A|. So, A is subtractive by Lemma 2.3 (ii).
This proves (i). Let B ⊆ R. Suppose that B is subtractive. Then
|B| = |B| ≤ |Fpr | = |T | = |T |. This proves (ii).
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Now we define the generalized Reed-Solomon codes over Galois rings
(see [13, Example 3.7], [14, Definition 22] as examples).

Definition 2.5. Let R = GR(pm, r) and n, k be two positive in-
tegers such that 1 ≤ k ≤ n. Let Pk be the set of polynomials over
R of degree less than k, including the zero polynomial in R[x]. Let
{α1, α2, . . . , αn} be a subtractive subset of R, α = (α1, α2, . . . , αn) ∈ Rn,
and v = (v1, v2, . . . , vn) ∈ Rn, where vi is unit for 1 ≤ i ≤ n. Then the
generalized Reed-Solomon code, GRSk(α, v) is defined by

GRSk(α, v) = {(v1f(α1), v2f(α2), . . . , vnf(αn)) | f ∈ Pk}.

The following theorem is very important in the main section. The
proof can be found in [14, Proposition 23, Corollary 24, Proposition 25,
Theorem 28].

Theorem 2.6. We have the followings for the GRSk(α, v) defined
above.

1. GRSk(α, v) is an [n, k, d] MDS code with d = n− k + 1.
2. A generator matrix of GRSk(α, v) is given by

(2.15) G =


v1 v2 · · · vn
v1α1 v2α2 · · · vnαn

v1α
2
1 v2α

2
2 · · · vnα

2
n

...
...

...

v1α
k−1
1 v2α

k−1
2 · · · vnα

k−1
n

 .

3. The dual code of GRSk(α, v) is given by

GRSk(α, v)
⊥ = GRSn−k(α, v

′),

where

v′ = (v1
′, v2

′, . . . , vn
′) and vi

′ =
(
vi
∏
j ̸=i

(αi − αj)
)−1

.

We generalize a result in [10, Corollary 2.4] by the following theorem.

Theorem 2.7. With the notations above, let ui =
(∏

j ̸=i(αi−αj)
)−1

,

(1 ≤ i ≤ n) and λ be a unit in GR(pm, r). Suppose that λui = v2i for
some unit vi ∈ GR(pm, r), (1 ≤ i ≤ n). Let v = (v1, v2, . . . , vn). Then
GRSn

2
(α, v) is an MDS self-dual code.

Proof. SinceGRSn
2
(α, v) is MDS, we only have to prove thatGRSn

2
(α, v)

is self-dual. Note that by Theorem 2.6 (iii), GRSn
2
(α,1)⊥ = GRSn

2
(α, u),

where 1 = (1, 1, . . . , 1) and u = (u1, u2, . . . , un). Let c and c′ be two
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codewords in GRSn
2
(α, v) with c = (v1f(α1), v2f(α2), . . . , vnf(αn)) and

c′ = (v1g(α1), v2g(α2), . . . , vng(αn)), (f, g ∈ Pn
2
). Then

c · c′ = (v1f(α1)v1g(α1), v2f(α2)v2g(α2), . . . , vnf(αn)vng(αn))

= (f(α1), f(α2), . . . , f(αn)) · (v21g(α1), v
2
2g(α2), . . . , v

2
ng(αn))

= (f(α1), f(α2), . . . , f(αn)) · (λu1g(α1), λu2g(α2), . . . , λung(αn))

= λ(f(α1), f(α2), . . . , f(αn)) · (u1g(α1), u2g(α2), . . . , ung(αn)).

Since (f(α1), f(α2), . . . , f(αn)) ∈ GRSn
2
(α,1) and (u1g(α1), u2g(α2), . . . ,

ung(αn)) ∈ GRSn
2
(α, u), we have c · c′ = 0. Therefore GRSn

2
(α, v) is

self-dual. This completes the proof.

We generalize a result in [16, Lemma 3] by the following lemma.

Lemma 2.8. Let R = GR(pm, r) and ξ be a primitive (pr − 1)th root

of unity in R. Let n|(pr − 1) be a positive integer and α = ξ
pr−1

n . Then
for any 0 ≤ i ≤ n− 1 we have∏

0≤j≤n−1,j ̸=i

(αi − αj) = αi(n−1)n.

Proof. The proof is almost same to the one [16, Lemma 3]. We include
the proof for a completeness. Note that α is a primitive n-th root of
unity. We have∏
0≤j≤n−1,j ̸=i

(αi−αj) = αi(n−1)
∏

0≤j≤n−1,j ̸=i

(1−αj−i) = αi(n−1)
∏

1≤j≤n−1

(1−αj).

Since xn − 1 =
∏n−1

j=0 (x− αj), we have

n−1∏
j=1

(x− αj) =
xn − 1

x− 1
= 1 + x+ x2 + · · ·+ xn−1

Taking x = 1, we have
∏n−1

j=1 (1− αj) = n.

2.6. The stronger version of Hensel’s lemma

In this subsection we give the stronger version of Hensel’s lemma.
We don’t give a complete explanation of the stronger version of Hensel’s
lemma. Undefined notations and terminologies can be found in [1, 4].
We start with the following definitions (see [4, Definition 2.1.2, Definition
2.1.4] as an example).
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Definition 2.9. Let R+ = {x ∈ R : x ≥ 0}. Fix a prime number
p ∈ Z. The p-adic valuation on Z is the function

vp : Z\{0} → R+

defined as follows: for each integer n ∈ Z, n ̸= 0, let vp(n) be the unique
positive integer satisfying

n = pvp(n)n′ with p ∤ n′.

We extend vp to the field of rational numbers as follows: if x = a/b ∈
Q\{0}, then

vp(x) = vp(a)− vp(b).

Definition 2.10. For any x ∈ Q, we define the p-adic absolute value
of x by

|x|p = p−vp(x)

if x ̸= 0, and we set |0|p = 0.

We give the stronger version of Hensel’s Lemma (see [1] as an exam-
ple).

Theorem 2.11. Let f(X) ∈ Zp[X] and a ∈ Zp satisfy

|f(a)|p < |f ′(a)|2p.

There is a unique α ∈ Zp such that f(α) = 0 in Zp and |α−a|p < |f ′(a)|p.

Proof. We don’t give a complete proof of the theorem. But we give
the idea of the proof which will be used in the main section of this paper.
Define a sequence {an} in Qp by a1 = a and

an+1 = an − f(an)

f ′(an)
, (n ≥ 1).

Set t = | f(a)
f ′(a)2 |p < 1. Then we can show by induction on n that

1. |an|p ≤ 1, i.e., an ∈ Zp,
2. |f ′(an)|p = |f ′(a1)|p,
3. |f(an)|p ≤ |f ′(a1)|2p · t2

n−1
.

The unique α is the limit of the sequence {an}. We omit the details
which can be found [1, Section 5].



MDS self-dual codes over Galois rings with even characteristic 189

3. Main results

We are interested in the existence of MDS self-dual codes overGR(2m, r).
We start with the following lemma.

Lemma 3.1. Let n be a positive integer such that n ≡ 0 (mod 8).
Let f(x) = x2 + (n− 1). Then there is an integer solution for f(x) ≡ 0
(mod 2m) for all m ≥ 1.

Proof. Let p = 2, a = 1, and |n|p = 2−r, (r ≥ 3). Then |f(a)|p =
|n|p = 2−r and |f ′(a)|2p = |2a|2p = |2|2p = 1

4 . Therefore

|f(a)|p < |f ′(a)|2p
which is the condition of Theorem 2.11. We define a sequence {aℓ},

a1 = a = 1, aℓ+1 = aℓ −
a2ℓ + (n− 1)

2aℓ
, (ℓ ≥ 1)

and note that |aℓ|p ≤ 1 as in the proof of Theorem 2.11. Let t = | f(a)
f ′(a)2 |p.

Since t = 22−r, we have

|f(aℓ)|p ≤ |f ′(a1)|2p · t2
ℓ−1 ≤ 2−2 · (22−r)2

ℓ−1
= 2−(2+(r−2)·2ℓ−1).

For a fixed m, we choose k such that 2 + (r− 2) · 2k−1 ≥ m. Then ak is
a solution of f(x) ≡ 0 (mod 2m).

We are ready to prove the main theorem of this paper.

Theorem 3.2. Let R = GR(2m, r), and n be a positive integer such
that (n − 1) | (2r − 1) and 8 | n. Then there exists an MDS self-dual
code over R with parameters [n, n/2, n/2 + 1].

Proof. Let ξ ∈ R be a primitive (2r − 1)th root of unity. Let α =

ξ
2r−1
n−1 . Then α is a primitive (n − 1)th root of unity. By Lemma 2.4,

{0, 1, α, α2, . . . , αn−2} is subtractive. Let

(3.1) G0 =


1 1 1 1 · · · 1
0 1 α α2 · · · αn−2

0 1 α2 (α2)2 · · · (αn−2)2

...
...

...
...

...

0 1 α
n
2
−1 (α2)

n
2
−1 · · · (αn−2)

n
2
−1

 .

By Theorem 2.6, we know thatG0 is the generator matrix of theGRSn
2
(δ,1)

code which is an [n, n2 ,
n
2+1] MDS code, where δ = (0, 1, α, α2, . . . , αn−2)
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and 1 = (1, 1, . . . , 1), and we also know thatGRSn
2
(δ,1)⊥ = GRSn

2
(δ, w),

where w = (w1, w2, . . . , wn),

wi =
∏

1≤j≤n,j ̸=i

(δi − δj)
−1,

where δ1 = 0, δk = αk−2(k = 2, 3, . . . , n). We have

w−1
1 = (0− 1)(0− α)(0− α2) · · · (0− αn−2)

= (−1)α1+2+···+n−2

= (−1)(αn−1)
n−2
2

= −1.

Using Lemma 2.8, we can calculate wi, (2 ≤ i ≤ n)

w−1
i = (αi−2 − 0)

∏
0≤j≤n−2,j ̸=i−2

(αi−2 − αj)

= αi−2 · α(i−2)(n−2) · (n− 1)

= α(i−2)(n−1)(n− 1)

= (αn−1)i−2(n− 1)

= n− 1.

Therefore we have

w = (w1, w2, . . . , wn) = (−1,
1

n− 1
,

1

n− 1
, . . . ,

1

n− 1
)

and

(n− 1)w = (−(n− 1), 1, 1, . . . , 1).

We claim that −(n − 1) is a square element in R = GR(2m, r). More
precisely, let f(x) = x2+(n−1). Then we claim that f(x) ≡ 0 (mod 2m)
has a solution for all m ≥ 1. By Lemma 3.1, we know that there is
an integer solution for f(x) ≡ 0 (mod 2m). Let β be a solution for
f(x) ≡ 0 (mod 2m). Then −(n − 1) = β2 in R = GR(2m, r). Let
v = (β, 1, 1, . . . , 1). Then GRSn

2
(δ, v) is MDS self-dual by Theorem 2.7.

The generator matrix of GRSn
2
(δ, v) is given by the following matrix G:

(3.2) G =


β 1 1 1 · · · 1
0 1 α α2 · · · αn−2

0 1 α2 (α2)2 · · · (αn−2)2

...
...

...
...

...

0 1 α
n
2
−1 (α2)

n
2
−1 · · · (αn−2)

n
2
−1

 .



MDS self-dual codes over Galois rings with even characteristic 191

Table 1. Positive integer pairs (n, v2(n)) such that (n−
1) | (2r − 1), (v2(n) ≥ 2, n ≥ 8, 3 ≤ r ≤ 10)

r (n, v2(n)) r (n, v2(n))
3 (8, 3) 7 (128, 7)
4 (16, 4) 8 (16, 4), (52, 2), (256, 8)
5 (32, 5) 9 (8, 3), (512, 9)
6 (8, 3), (64, 6) 10 (12, 2), (32, 5), (1024, 10)

In Table 1, we give positive integer pairs (n, v2(n)) such that (n−1) |
(2r − 1), v2(n) ≥ 2, n ≥ 8, and 3 ≤ r ≤ 10. In Table 1, for the case
n = 8, 16, 32, 64, 128, 256, 512, 1024, since v2(n) ≥ 3, by Theorem 3.2, we
know that there exists an MDS self-dual code over R = GR(2m, r) with
parameters [n, n/2, n/2+1]. The generator matrix G of the code is given
by Equation (3.2). In G, we should determine β. Following the proof
of Lemma 3.1, we can determine the value β. We explain this in the
following. Let k0 be the smallest value such that 2+(v2(n)−2) ·2k0−1 ≥
m. Let β ≡ ak0 (mod 2m). In Table 2, we give the values, k0, ak0 , β for
n = 8, 16, 32, and 1 ≤ m ≤ 10. For example, if n = 8 and m = 7, then
since v2(n) = 3, k0 is the smallest value such that 2+(3−2) ·2k0−1 ≥ 7.
So, k0 = 4. By the sequence formula,

a1 = 1, aℓ+1 = aℓ −
a2ℓ + 7

2aℓ
, (ℓ ≥ 1),

we have

a4 = 31/3

and
31

3
≡ 31 · 3−1 ≡ 31 · 43 ≡ 53 (mod 27).

Therefore β = 53. Note that β is the solution of f(x) ≡ 0 (mod 27),
i.e., 532 + 7 = 2816 ≡ 0 (mod 27).

In Table 1, for the two case n = 52 and n = 12, we have v2(52) =
v2(12) = 2. By Theorem 1.3, there exists an MDS self-dual code of
length 52 and length 12 over R = GR(2m, 8) and R = GR(2m, 10),
respectively, (m = 1, 2). But we can not apply Theorem 3.2 to this
case, therefore we don’t know the existence of an MDS self-dual code
for m ≥ 3. The main point of Theorem 3.2 is that −(n − 1) should be
a square element of R = GR(2m, r). The following lemma shows that
−(n− 1) is not a square element in Z2m , (m ≥ 3) if v2(n) = 1, 2.
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Table 2. (k0, ak0 , β)

n\m 1 2 3 4 5

8 (1,1,1) (1,1,1) (1,1,1) (2,−3,13) (3,−1/3,21)

16 (1,1,1) (1,1,1) (1,1,1) (1,1,1) (2,−7,25)
32 (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)

n\m 6 7 8 9 10

8 (3,−1/3,21) (4,31/3,53) (4,31/3,181) (4,31/3,181) (4,31/3,693)
16 (2,−7,57) (3,−17/7,89) (3,−17/7,217) (3,−17/7,217) (3,−17/7,729)

32 (2,−15,49) (2,−15,113) (2,−15,241) (3,−97/15,369) (3,−97/15,881)

Table 3. Existence of MDS self-dual codes of code
length n over GR(2m, r), (m ≥ 2, 1 ≤ r ≤ 5, 4 ≤ n ≤ 32)

r\n 4 8 12 16 20 24 28 32
1
2 O
3 X O
4 O ? ? O
5 X ? ? ? ? ? ? O

Lemma 3.3. Let n be an even positive integer such that n ̸≡ 0
(mod 8). Let f(x) = x2 + (n− 1). Then there is no integer solution for
f(x) ≡ 0 (mod 2m) for m ≥ 3.

Proof. Suppose that β is an integer solution of f(x) ≡ 0 (mod 2m),
(m ≥ 3). Then

β2 + (n− 1) ≡ 0 (mod 8).

Since n − 1 is odd, β should be odd and β2 ≡ 1 (mod 8). Therefore
β2 + (n − 1) ≡ n ̸≡ 0 (mod 8). We conclude that f(x) ≡ 0 (mod 2m)
has no solution for m ≥ 3.

Although −(n−1) is not a square element in Z2m , (m ≥ 3) if v2(n) =
2, it is still possible that −(n−1) is a square element in R = GR(2m, r).
We give the following open problem.

Open Problem: Let n be a positive integer such that n ≡ 0 (mod 4)
and n ̸≡ 0 (mod 8), and (n − 1) | (2r − 1). Let f(x) = x2 + (n − 1).
Does the equation f(x) = 0 have a solution in GR(2m, r), (m ≥ 3) ?

In Table 3, we show the existence of MDS self-dual codes of length n
over GR(2m, r), (m ≥ 2, 1 ≤ r ≤ 5, 4 ≤ n ≤ 32). In this table, ’X’, ’O’,
and ’?’ represents the nonexistence, existence, and tentatively unknown
existence, respectively. Using Theorem 1.2 and Theorem 3.2, the table
can be verified.
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4. Summary

In this paper, we studied the generalized Reed-Solomon codes over
Galois rings and the stronger version of Hensel’s lemma. Using these
we proved that there exists an MDS self-dual code over GR(2m, r) with
parameters [n, n/2, n/2+ 1] if (n− 1) | (2r − 1) and 8 | n. Many aspects
remain to be studied in the future, including the open problem presented
in the main section. The question marks ’?’ in Table 3 are also possible
research topics in the future.
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[4] Fernando Q. Gouvêa, p-adic Numbers An Introduction, Second Edition, Springer,
1997, Corrected 3rd printing 2003.

[5] M. Grassl, T.A. Gulliver, On self-dual MDS codes, In: Proceedings of ISIT (2008),
1954–1957.

[6] S. Han, MDS self-dual codes and antiorthogonal matrices over Galois rings, MDPI
Information, 10 (2019), 1–12.

[7] S. Han, On the existence of MDS self-dual codes over finite chain rings, J.
Chungcheong Math. Soc., 33 (2020), 255–270.

[8] S. Han, On the construction of MDS self-dual codes over Galois rings, Journal of
Applied and Pure Mathematics, 4 (2022), 211–219.

[9] W.C. Huffman, V.S. Pless, Fundamentals of Error-correcting Codes, Cambridge:
Cambridge University Press, 2003.

[10] L. Jin and C. Xing, New MDS Self-Dual Codes From Generalized Reed?Solomon
Codes, IEEE-IT, 63 (2017), 1434–1438.

[11] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Ams-
terdam, The Netherlands: North-Holland, 1977.

[12] G.H. Norton, A. Salagean, On the structure of linear and cyclic codes over a
finite chain ring, Appl. Algebra Engrg. Comm. Comput., 10 (2000), 489–506.

[13] G.H. Norton, A. Salagean, On the key equation over a commutative ring, Designs,
Codes and Cryptography, 20 (2000), 125–141.

[14] G. Quintin, M. Barbier, C. Chabot, On Generalized Reed-Solomon Codes Over
Commutative and Noncommutative Rings, IEEE-IT, 59 (2013), 5882–5897.

[15] Z.-X. Wan, Finite Fields and Galois Rings, World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2012.

[16] H. Yan, A note on the constructions of MDS self-dual codes, Cryptogr. Commun.,
11 (2019), 259–268.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf
https://ieeexplore.ieee.org/document/817524
https://arxiv.org/abs/1811.02802
https://link.springer.com/book/10.1007/978-3-642-59058-0
https://www.semanticscholar.org/paper/On-self-dual-MDS-codes-Grass-Gulliver/08ee961cc978c1c79b2c168ee7c64797b2f2e7e2
https://www.mdpi.com/2078-2489/10/4/153
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002586915
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002862514
 https://doc.lagout.org/Others/Information%20Theory/Coding%20Theory/Fundamentals%20of%20Error-Correcting%20Codes%20-%20W.%20Cary%20Huffman.pdf
https://arxiv.org/abs/1601.04467
https://shop.elsevier.com/books/the-theory-of-error-correcting-codes/macwilliams/978-0-444-85193-2
https://repository.lboro.ac.uk/articles/journal_contribution/On_the_stucture_of_linear_and_cyclic_codes_over_finite_chain_rings/9401618
https://link.springer.com/article/10.1023/A:1008385407717
https://inria.hal.science/hal-00670004/document
https://www.worldscientific.com/worldscibooks/10.1142/8250#t=aboutBook
https://dl.acm.org/doi/10.1007/s12095-018-0288-3


194 Sunghyu Han

Sunghyu Han
School of Liberal Arts
KoreaTec
Cheonan 31253, Republic of Korea
E-mail : sunghyu@koreatech.ac.kr




