# MDS SELF-DUAL CODES OVER GALOIS RINGS WITH EVEN CHARACTERISTIC 

Sunghyu Han


#### Abstract

Let $G R\left(2^{m}, r\right)$ be a Galois ring with even characteristic. We are interested in the existence of MDS(Maximum Distance Separable) self-dual codes over $G R\left(2^{m}, r\right)$. In this paper, we prove that there exists an MDS self-dual code over $G R\left(2^{m}, r\right)$ with parameters $[n, n / 2, n / 2+1]$ if $(n-1) \mid\left(2^{r}-1\right)$ and $8 \mid n$.


## 1. Introduction

Let $R=G R\left(p^{m}, r\right)$ be a Galois ring. We are interested in the existence of MDS(Maximum Distance Separable) self-dual codes over $R$. If $m=1$, then $R=G R(p, r)$ is the finite field $\mathbb{F}_{p^{r}}$. MDS self-dual codes over finite fields are studied extensively. If $p=2$ then we have the following result.

Theorem 1.1. [5, Theorem 3] For $R=G R(2, r)=\mathbb{F}_{2^{r}}$, there exist an MDS self-dual code $C=[2 k, k, k+1]$ over $R$ for all $k=1, \cdots, 2^{r-1}$.

If MDS conjecture over finite fields [9, Section 7.4] is true, then the research for $\mathbb{F}_{2^{r}}$ is completed. For odd prime $p$, there are many research papers for MDS self-dual codes over $\mathbb{F}_{p^{r}}$ (see [3] as an example) and the research has not been completed.

MDS self-dual codes over Galois rings are studied [7]. If $p$ is odd, then the existence of MDS self-dual codes over $G R\left(p^{m}, r\right)$ is equivalent to those over $\mathbb{F}_{p^{r}}[7$, Theorem 3.8, Theorem 3.9]. In other words, if we have an MDS self-dual code over $\operatorname{GR}\left(p^{m}, r\right)$, then we can make an MDS self-dual code over $\mathbb{F}_{p^{r}}$ using the canonical projection map. Conversely,

[^0]if we have an MDS self-dual code over $\mathbb{F}_{p^{r}}$, then we can make an MDS self-dual code over $G R\left(p^{m}, r\right)$ using lifting process.

If $p$ is even, then the projection map is still working but the lifting process can not be applied. Therefore the study of MDS self-dual codes over Galois rings with even characteristic is not easy. This paper is all about MDS self-dual codes over $G R\left(2^{m}, r\right)$. If $m=1, G R\left(2^{m}, r\right)=\mathbb{F}_{2}^{r}$. Therefore the research is done by Theorem 1.1. We assume that $m \geq 2$. There are some results for this case.

Theorem 1.2. [7, Theorem 4.5, Theorem 4.6] For Galois ring $R=$ $G R\left(2^{m}, r\right)$, we have the following:

1. If $m \geq 2$, then there is no MDS self-dual code over $R$ for length $n \equiv 2(\bmod 4)$.
2. If $m \geq 2$ and $r$ is odd, then there is no $[4,2,3]$ MDS self-dual code over $R$.
3. If $m \geq 2$ and $r$ is even, then there exist a $[4,2,3]$ MDS self-dual code over $R$.
Theorem 1.3. [8, Theorem 3.4] Let $R=G R\left(2^{m}, r\right)$, and $n$ be a positive integer such that $(n-1) \mid\left(2^{r}-1\right)$ and $2^{m} \mid n$. Then there exists an MDS self-dual code over $R$ with parameters $[n, n / 2, n / 2+1]$.

The purpose of this paper is to develop Theorem 1.3. We replace the condition $2^{m} \mid n$ of Theorem 1.3 with $8 \mid n$. Therefore the main result of this paper is the following. We prove that there exists an MDS self-dual code over $G R\left(2^{m}, r\right)$ with parameters $[n, n / 2, n / 2+1]$ if $(n-1) \mid\left(2^{r}-1\right)$ and $8 \mid n$.

This paper is organized as follows. In Section 2, we provide basic facts for Galois rings, linear codes, MDS codes, self-dual codes, generalized Reed-Solomon codes, and the stronger version of Hensel's lemma. In Section 3, we describe our main results, which are about the existence of MDS self-dual codes over Galois rings. In Section 4, we summarize this paper and give some future works.

## 2. Preliminaries

### 2.1. Galois rings

In this subsection, we present some well-known facts about Galois rings (see [15] as an example). Let $p$ be a fixed prime and $m$ be a positive integer. First, we consider the following canonical projection

$$
\begin{equation*}
\mu: \mathbb{Z}_{p^{m}} \rightarrow \mathbb{Z}_{p} \tag{2.1}
\end{equation*}
$$

which is defined by

$$
\begin{equation*}
\mu(c)=c \quad(\bmod p) \tag{2.2}
\end{equation*}
$$

The map $\mu$ can be extended naturally to the following map

$$
\begin{equation*}
\mu: \mathbb{Z}_{p^{m}}[x] \rightarrow \mathbb{Z}_{p}[x] \tag{2.3}
\end{equation*}
$$

which is defined by

$$
\begin{equation*}
\mu\left(a_{0} x+a_{1} x+\cdots+a_{n} x^{n}\right)=\mu\left(a_{0}\right)+\mu\left(a_{1}\right) x+\cdots+\mu\left(a_{n}\right) x^{n} \tag{2.4}
\end{equation*}
$$

This extended $\mu$ is a ring homomorphism with kernel $(p)$.
Let $f(x)$ be a polynomial in $\mathbb{Z}_{p^{m}}[x]$. Then, $f(x)$ is called basic irreducible if $\mu(f(x))$ is irreducible. A Galois ring is constructed as

$$
\begin{equation*}
G R\left(p^{m}, r\right)=\mathbb{Z}_{p^{m}}[x] /(f(x)) \tag{2.5}
\end{equation*}
$$

where $f(x)$ is a monic basic irreducible polynomial in $\mathbb{Z}_{p^{m}}[x]$ of degree $r$. The elements of $G R\left(p^{m}, r\right)$ are residue classes of the form

$$
\begin{equation*}
a_{0}+a_{1} x+\cdots+a_{r-1} x^{r-1}+(f(x)) \tag{2.6}
\end{equation*}
$$

where $a_{i} \in \mathbb{Z}_{p^{m}},(0 \leq i \leq r-1)$.
A polynomial $h(x)$ in $\mathbb{Z}_{p^{m}}[x]$ is called a basic primitive polynomial if $\mu(h(x))$ is a primitive polynomial. It is a well-known fact that there is a monic basic primitive polynomial $h(x)$ of degree $r$ over $\mathbb{Z}_{p^{m}}$ and $h(x) \mid\left(x^{p^{r}-1}-1\right)$ in $\mathbb{Z}_{p^{m}}[x]$. Let $h(x)$ be a monic basic primitive polynomial in $\mathbb{Z}_{p^{m}}[x]$ of degree $r$ and $h(x) \mid\left(x^{p^{r}-1}-1\right)$. Consider the following element

$$
\begin{equation*}
\xi=x+(h(x)) \in G R\left(p^{m}, r\right)=\mathbb{Z}_{p^{m}}[x] /(h(x)) \tag{2.7}
\end{equation*}
$$

The order of $\xi$ is $p^{r}-1$. Teichmüller representatives are defined as follows.

$$
\begin{equation*}
T=\left\{0,1, \xi, \xi^{2}, \ldots, \xi^{p^{r}-2}\right\} \tag{2.8}
\end{equation*}
$$

Every element $t \in G R\left(p^{m}, r\right)$ can be uniquely represented by the form

$$
\begin{equation*}
t=t_{0}+p t_{1}+p^{2} t_{2}+\cdots+p^{m-1} t_{m-1} \tag{2.9}
\end{equation*}
$$

where $t_{i} \in T,(0 \leq i \leq m-1)$. Moreover, $t$ is a unit if and only if $t_{0} \neq 0$, and $t$ is a zero divisor or 0 if and only if $t_{0}=0$.

The Galois ring $R=G R\left(p^{m}, r\right)$ is a local ring with a unique maximal ideal $M=(p)$. The canonical projection map is defined by

$$
\begin{aligned}
-\quad: & R \rightarrow R / M \\
& r \rightarrow \bar{r}=r+M
\end{aligned}
$$

It is known that $\bar{\xi}$ is a primitive element in $R / M\left(=\mathbb{F}_{p^{r}}\right)$.

### 2.2. Linear codes over $G R\left(p^{m}, r\right)$

A linear code $C$ of length $n$ over $G R\left(p^{m}, r\right)$ is a submodule of $G R\left(p^{m}, r\right)^{n}$, and the elements in $C$ are called codewords. The distance $d(\mathbf{u}, \mathbf{v})$ between two elements $\mathbf{u}, \mathbf{v} \in G R\left(p^{m}, r\right)^{n}$ is the number of coordinates in which $\mathbf{u}, \mathbf{v}$ differ. The minimum distance of a code C is the smallest distance between distinct codewords. The weight of a codeword $\mathbf{c}=\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ in $C$ is the number of nonzero $c_{j}$. The minimum weight of $C$ is the smallest nonzero weight of any codeword in $C$. If $C$ is a linear code, then the minimum distance and the minimum weight are the same.

A generator matrix for a linear code $C$ over $G R\left(p^{m}, r\right)$ is permutation equivalent to the following one in the standard form [12, 13]:

$$
G=\left(\begin{array}{ccccccc}
I_{k_{0}} & A_{0,1} & A_{0,2} & A_{0,3} & \cdots & A_{0, m-1} & A_{0, m}  \tag{2.10}\\
0 & p I_{k_{1}} & p A_{1,2} & p A_{1,3} & \cdots & p A_{1, m-1} & p A_{1, m} \\
0 & 0 & p^{2} I_{k_{2}} & p^{2} A_{2,3} & \cdots & p^{2} A_{2, m-1} & p^{2} A_{2, m} \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & p^{m-1} I_{k_{m-1}} & p^{m-1} A_{m-1, m}
\end{array}\right),
$$

where the columns are grouped into square blocks of sizes $k_{0}, k_{1}, \ldots, k_{m-1}$. The rank of $C$, denoted by $\operatorname{rank}(C)$, is defined to be the number of nonzero rows of its generator matrix $G$ in a standard form. Therefore $\operatorname{rank}(C)=\sum_{i=0}^{m-1} k_{i}$. We call $k_{0}$ in $G$ the free rank of a code $C$. If $\operatorname{rank}(C)=k_{0}$, then $C$ is called a free code. We say $C$ is an $[n, k, d]$ linear code, if the code length is $n$, the rank of $C$ is $k$, and the minimum weight of $C$ is $d$. In this paper, we assume that all codes are linear unless we state otherwise.

### 2.3. MDS codes

It is known (see [11] as an example) that for a (linear or nonlinear) code $C$ of length $n$ over any finite alphabet $A$,

$$
\begin{equation*}
d \leq n-\log _{|A|}(|C|)+1 . \tag{2.11}
\end{equation*}
$$

Codes meeting this bound are called MDS codes. Further, if $C$ is a linear code over a ring, then

$$
\begin{equation*}
d \leq n-\operatorname{rank}(C)+1 . \tag{2.12}
\end{equation*}
$$

Codes meeting this bound are called maximum distance with respect to rank (MDR) codes $[2,13]$. The following lemma states the necessary
and sufficient condition for MDS codes over Galois rings (see [6] as an example).

Lemma 2.1. Let $C$ be a linear code over $G R\left(p^{m}, r\right)$. Then, $C$ is MDS if and only if $C$ is MDR and free.

### 2.4. Self-dual codes

We define the usual inner product: for $\mathbf{x}, \mathbf{y} \in G R\left(p^{m}, r\right)^{n}$,

$$
\begin{equation*}
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+\cdots+x_{n} y_{n} \tag{2.13}
\end{equation*}
$$

For a code $C$ of length $n$ over $G R\left(p^{m}, r\right)$, let

$$
\begin{equation*}
C^{\perp}=\left\{\mathbf{x} \in G R\left(p^{m}, r\right)^{n} \mid \mathbf{x} \cdot \mathbf{c}=0, \forall \mathbf{c} \in C\right\} \tag{2.14}
\end{equation*}
$$

be the dual code of $C$. If $C \subseteq C^{\perp}$, we say that $C$ is self-orthogonal, and if $C=C^{\perp}$, then $C$ is self-dual. If a self-dual code $C$ is MDS then $C$ is called an MDS self-dual code.

### 2.5. Generalized Reed-Solomon codes over $G R\left(p^{m}, r\right)$

In this subsection, we describe generalized Reed-Solomon codes over $R=G R\left(p^{m}, r\right)[13,14]$. We start with the following definition (see [13, Definition 2.2], [14, Definition 5] as examples).

Definition 2.2. Let $R=G R\left(p^{m}, r\right)$. A subset $S$ of $R$ is subtractive if $s-t$ is unit for all $s, t \in S$ with $s \neq t$.

Lemma 2.3. ([13, Lemma 2.5, Corollary 2.6]) Let $R$ be a finite local ring, $M$ be the maximal ideal of $R$, and $K=R / M$ the residue field. For an element $r \in R$, we denote by $\bar{y}$ its image under the canonical projection from $R$ onto $K$. Then we have the following.

1. For $r, r^{\prime} \in R, \bar{r} \neq \overline{r^{\prime}}$ if and only if $r-r^{\prime}$ is a unit of $R$.
2. For $S \subseteq R,|S|=|\bar{S}|$ if and only if $S$ is subtractive.

Lemma 2.4. Let $R=G R\left(p^{m}, r\right)$ and $T=\left\{0,1, \xi, \xi^{2}, \ldots, \xi^{p^{r}-2}\right\}$ be the set of the Teichmüller representatives of $R$. Then we have the following.

1. If $A \subseteq T$, then $A$ is subtractive.
2. For $B \subseteq R$, if $B$ is subtractive then $|B| \leq|T|$.

Proof. We know that $R /(p)=\mathbb{F}_{p^{r}}$, where $(p)$ is the unique maximal ideal of $R$, and $\bar{\xi}$ is a primitive element of $\mathbb{F}_{p^{r}}$. Therefore $\bar{T}=\mathbb{F}_{p^{r}}$, $|T|=|\bar{T}|$, and $|A|=|\bar{A}|$. So, $A$ is subtractive by Lemma 2.3 (ii). This proves (i). Let $B \subseteq R$. Suppose that $B$ is subtractive. Then $|B|=|\bar{B}| \leq\left|\mathbb{F}_{p^{r}}\right|=|\bar{T}|=|T|$. This proves (ii).

Now we define the generalized Reed-Solomon codes over Galois rings (see [13, Example 3.7], [14, Definition 22] as examples).

DEFINITION 2.5. Let $R=G R\left(p^{m}, r\right)$ and $n, k$ be two positive integers such that $1 \leq k \leq n$. Let $P_{k}$ be the set of polynomials over $R$ of degree less than $k$, including the zero polynomial in $R[x]$. Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a subtractive subset of $R, \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in R^{n}$, and $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in R^{n}$, where $v_{i}$ is unit for $1 \leq i \leq n$. Then the generalized Reed-Solomon code, $G R S_{k}(\alpha, v)$ is defined by

$$
G R S_{k}(\alpha, v)=\left\{\left(v_{1} f\left(\alpha_{1}\right), v_{2} f\left(\alpha_{2}\right), \ldots, v_{n} f\left(\alpha_{n}\right)\right) \mid f \in P_{k}\right\}
$$

The following theorem is very important in the main section. The proof can be found in [14, Proposition 23 , Corollary 24, Proposition 25 , Theorem 28].

Theorem 2.6. We have the followings for the $G R S_{k}(\alpha, v)$ defined above.

1. $G R S_{k}(\alpha, v)$ is an $[n, k, d]$ MDS code with $d=n-k+1$.
2. A generator matrix of $G R S_{k}(\alpha, v)$ is given by

$$
G=\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}  \tag{2.15}\\
v_{1} \alpha_{1} & v_{2} \alpha_{2} & \cdots & v_{n} \alpha_{n} \\
v_{1} \alpha_{1}^{2} & v_{2} \alpha_{2}^{2} & \cdots & v_{n} \alpha_{n}^{2} \\
\vdots & \vdots & & \vdots \\
v_{1} \alpha_{1}^{k-1} & v_{2} \alpha_{2}^{k-1} & \cdots & v_{n} \alpha_{n}^{k-1}
\end{array}\right)
$$

3. The dual code of $G R S_{k}(\alpha, v)$ is given by

$$
G R S_{k}(\alpha, v)^{\perp}=G R S_{n-k}\left(\alpha, v^{\prime}\right)
$$

where

$$
v^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right) \text { and } v_{i}^{\prime}=\left(v_{i} \prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right)\right)^{-1}
$$

We generalize a result in [10, Corollary 2.4] by the following theorem.
THEOREM 2.7. With the notations above, let $u_{i}=\left(\prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right)\right)^{-1}$, $(1 \leq i \leq n)$ and $\lambda$ be a unit in $G R\left(p^{m}, r\right)$. Suppose that $\lambda u_{i}=v_{i}^{2}$ for some unit $v_{i} \in G R\left(p^{m}, r\right)$, $(1 \leq i \leq n)$. Let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Then $G R S_{\frac{n}{2}}(\alpha, v)$ is an MDS self-dual code.

Proof. Since $G R S_{\frac{n}{2}}(\alpha, v)$ is MDS, we only have to prove that $G R S_{\frac{n}{2}}(\alpha, v)$ is self-dual. Note that by Theorem 2.6 (iii), $G R S_{\frac{n}{2}}(\alpha, \mathbf{1})^{\perp}=G R S_{\frac{n}{2}}(\alpha, u)$, where $\mathbf{1}=(1,1, \ldots, 1)$ and $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$. Let $c$ and $c^{\prime}$ be two
codewords in $G R S_{\frac{n}{2}}(\alpha, v)$ with $c=\left(v_{1} f\left(\alpha_{1}\right), v_{2} f\left(\alpha_{2}\right), \ldots, v_{n} f\left(\alpha_{n}\right)\right)$ and $c^{\prime}=\left(v_{1} g\left(\alpha_{1}\right), v_{2} g\left(\alpha_{2}\right), \ldots, v_{n} g\left(\alpha_{n}\right)\right),\left(f, g \in P_{\frac{n}{2}}\right)$. Then

$$
\begin{aligned}
c \cdot c^{\prime} & =\left(v_{1} f\left(\alpha_{1}\right) v_{1} g\left(\alpha_{1}\right), v_{2} f\left(\alpha_{2}\right) v_{2} g\left(\alpha_{2}\right), \ldots, v_{n} f\left(\alpha_{n}\right) v_{n} g\left(\alpha_{n}\right)\right) \\
& =\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{n}\right)\right) \cdot\left(v_{1}^{2} g\left(\alpha_{1}\right), v_{2}^{2} g\left(\alpha_{2}\right), \ldots, v_{n}^{2} g\left(\alpha_{n}\right)\right) \\
& =\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{n}\right)\right) \cdot\left(\lambda u_{1} g\left(\alpha_{1}\right), \lambda u_{2} g\left(\alpha_{2}\right), \ldots, \lambda u_{n} g\left(\alpha_{n}\right)\right) \\
& =\lambda\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{n}\right)\right) \cdot\left(u_{1} g\left(\alpha_{1}\right), u_{2} g\left(\alpha_{2}\right), \ldots, u_{n} g\left(\alpha_{n}\right)\right) .
\end{aligned}
$$

Since $\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{n}\right)\right) \in G R S_{\frac{n}{2}}(\alpha, \mathbf{1})$ and $\left(u_{1} g\left(\alpha_{1}\right), u_{2} g\left(\alpha_{2}\right), \ldots\right.$, $\left.u_{n} g\left(\alpha_{n}\right)\right) \in G R S_{\frac{n}{2}}(\alpha, u)$, we have $c \cdot c^{\prime}=0$. Therefore $G R S_{\frac{n}{2}}(\alpha, v)$ is self-dual. This completes the proof.

We generalize a result in [16, Lemma 3] by the following lemma.
Lemma 2.8. Let $R=G R\left(p^{m}, r\right)$ and $\xi$ be a primitive $\left(p^{r}-1\right)$ th root of unity in $R$. Let $n \mid\left(p^{r}-1\right)$ be a positive integer and $\alpha=\xi^{\frac{p^{r}-1}{n}}$. Then for any $0 \leq i \leq n-1$ we have

$$
\prod_{0 \leq j \leq n-1, j \neq i}\left(\alpha^{i}-\alpha^{j}\right)=\alpha^{i(n-1)} n
$$

Proof. The proof is almost same to the one [16, Lemma 3]. We include the proof for a completeness. Note that $\alpha$ is a primitive $n$-th root of unity. We have


Since $x^{n}-1=\prod_{j=0}^{n-1}\left(x-\alpha^{j}\right)$, we have

$$
\prod_{j=1}^{n-1}\left(x-\alpha^{j}\right)=\frac{x^{n}-1}{x-1}=1+x+x^{2}+\cdots+x^{n-1}
$$

Taking $x=1$, we have $\prod_{j=1}^{n-1}\left(1-\alpha^{j}\right)=n$.

### 2.6. The stronger version of Hensel's lemma

In this subsection we give the stronger version of Hensel's lemma. We don't give a complete explanation of the stronger version of Hensel's lemma. Undefined notations and terminologies can be found in [1, 4]. We start with the following definitions (see [4, Definition 2.1.2, Definition 2.1.4] as an example).

Definition 2.9. Let $\mathbb{R}_{+}=\{x \in \mathbb{R}: x \geq 0\}$. Fix a prime number $p \in \mathbb{Z}$. The $p$-adic valuation on $\mathbb{Z}$ is the function

$$
v_{p}: \mathbb{Z} \backslash\{0\} \rightarrow \mathbb{R}_{+}
$$

defined as follows: for each integer $n \in \mathbb{Z}, n \neq 0$, let $v_{p}(n)$ be the unique positive integer satisfying

$$
n=p^{v_{p}(n)} n^{\prime} \text { with } p \nmid n^{\prime} .
$$

We extend $v_{p}$ to the field of rational numbers as follows: if $x=a / b \in$ $\mathbb{Q} \backslash\{0\}$, then

$$
v_{p}(x)=v_{p}(a)-v_{p}(b)
$$

Definition 2.10. For any $x \in \mathbb{Q}$, we define the $p$-adic absolute value of $x$ by

$$
|x|_{p}=p^{-v_{p}(x)}
$$

if $x \neq 0$, and we set $|0|_{p}=0$.
We give the stronger version of Hensel's Lemma (see [1] as an example).

Theorem 2.11. Let $f(X) \in \mathbb{Z}_{p}[X]$ and $a \in \mathbb{Z}_{p}$ satisfy

$$
|f(a)|_{p}<\left|f^{\prime}(a)\right|_{p}^{2}
$$

There is a unique $\alpha \in \mathbb{Z}_{p}$ such that $f(\alpha)=0$ in $\mathbb{Z}_{p}$ and $|\alpha-a|_{p}<\left|f^{\prime}(a)\right|_{p}$.
Proof. We don't give a complete proof of the theorem. But we give the idea of the proof which will be used in the main section of this paper. Define a sequence $\left\{a_{n}\right\}$ in $Q_{p}$ by $a_{1}=a$ and

$$
a_{n+1}=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)},(n \geq 1)
$$

Set $t=\left|\frac{f(a)}{f^{\prime}(a)^{2}}\right|_{p}<1$. Then we can show by induction on $n$ that

1. $\left|a_{n}\right|_{p} \leq 1$, i.e., $a_{n} \in \mathbb{Z}_{p}$,
2. $\left|f^{\prime}\left(a_{n}\right)\right|_{p}=\left|f^{\prime}\left(a_{1}\right)\right|_{p}$,
3. $\left|f\left(a_{n}\right)\right|_{p} \leq\left|f^{\prime}\left(a_{1}\right)\right|_{p}^{2} \cdot t^{2^{n-1}}$.

The unique $\alpha$ is the limit of the sequence $\left\{a_{n}\right\}$. We omit the details which can be found $[1$, Section 5].

## 3. Main results

We are interested in the existence of MDS self-dual codes over $G R\left(2^{m}, r\right)$. We start with the following lemma.

Lemma 3.1. Let $n$ be a positive integer such that $n \equiv 0(\bmod 8)$. Let $f(x)=x^{2}+(n-1)$. Then there is an integer solution for $f(x) \equiv 0$ $\left(\bmod 2^{m}\right)$ for all $m \geq 1$.

Proof. Let $p=2, a=1$, and $|n|_{p}=2^{-r},(r \geq 3)$. Then $|f(a)|_{p}=$ $|n|_{p}=2^{-r}$ and $\left|f^{\prime}(a)\right|_{p}^{2}=|2 a|_{p}^{2}=|2|_{p}^{2}=\frac{1}{4}$. Therefore

$$
|f(a)|_{p}<\left|f^{\prime}(a)\right|_{p}^{2}
$$

which is the condition of Theorem 2.11. We define a sequence $\left\{a_{\ell}\right\}$,

$$
a_{1}=a=1, a_{\ell+1}=a_{\ell}-\frac{a_{\ell}^{2}+(n-1)}{2 a_{\ell}},(\ell \geq 1)
$$

and note that $\left|a_{\ell}\right|_{p} \leq 1$ as in the proof of Theorem 2.11. Let $t=\left|\frac{f(a)}{f^{\prime}(a)^{2}}\right|_{p}$. Since $t=2^{2-r}$, we have

$$
\left|f\left(a_{\ell}\right)\right|_{p} \leq\left|f^{\prime}\left(a_{1}\right)\right|_{p}^{2} \cdot t^{2^{\ell-1}} \leq 2^{-2} \cdot\left(2^{2-r}\right)^{2^{\ell-1}}=2^{-\left(2+(r-2) \cdot 2^{\ell-1}\right)}
$$

For a fixed $m$, we choose $k$ such that $2+(r-2) \cdot 2^{k-1} \geq m$. Then $a_{k}$ is a solution of $f(x) \equiv 0\left(\bmod 2^{m}\right)$.

We are ready to prove the main theorem of this paper.
ThEOREM 3.2. Let $R=G R\left(2^{m}, r\right)$, and $n$ be a positive integer such that $(n-1) \mid\left(2^{r}-1\right)$ and $8 \mid n$. Then there exists an MDS self-dual code over $R$ with parameters $[n, n / 2, n / 2+1]$.

Proof. Let $\xi \in R$ be a primitive $\left(2^{r}-1\right)$ th root of unity. Let $\alpha=$ $\xi^{\frac{2^{r}-1}{n-1}}$. Then $\alpha$ is a primitive $(n-1)$ th root of unity. By Lemma 2.4, $\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{n-2}\right\}$ is subtractive. Let

$$
G 0=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1  \tag{3.1}\\
0 & 1 & \alpha & \alpha^{2} & \cdots & \alpha^{n-2} \\
0 & 1 & \alpha^{2} & \left(\alpha^{2}\right)^{2} & \cdots & \left(\alpha^{n-2}\right)^{2} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 1 & \alpha^{\frac{n}{2}-1} & \left(\alpha^{2}\right)^{\frac{n}{2}-1} & \cdots & \left(\alpha^{n-2}\right)^{\frac{n}{2}-1}
\end{array}\right]
$$

By Theorem 2.6, we know that $G 0$ is the generator matrix of the $G R S_{\frac{n}{2}}(\delta, \mathbf{1})$ code which is an $\left[n, \frac{n}{2}, \frac{n}{2}+1\right]$ MDS code, where $\delta=\left(0,1, \alpha, \alpha^{2}, \ldots, \alpha^{n-2}\right)$
and $\mathbf{1}=(1,1, \ldots, 1)$, and we also know that $G R S_{\frac{n}{2}}(\delta, \mathbf{1})^{\perp}=G R S_{\frac{n}{2}}(\delta, w)$,
where $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$,

$$
w_{i}=\prod_{1 \leq j \leq n, j \neq i}\left(\delta_{i}-\delta_{j}\right)^{-1}
$$

where $\delta_{1}=0, \delta_{k}=\alpha^{k-2}(k=2,3, \ldots, n)$. We have

$$
\begin{aligned}
w_{1}^{-1} & =(0-1)(0-\alpha)\left(0-\alpha^{2}\right) \cdots\left(0-\alpha^{n-2}\right) \\
& =(-1) \alpha^{1+2+\cdots+n-2} \\
& =(-1)\left(\alpha^{n-1}\right)^{\frac{n-2}{2}} \\
& =-1
\end{aligned}
$$

Using Lemma 2.8, we can calculate $w_{i},(2 \leq i \leq n)$

$$
\begin{aligned}
w_{i}^{-1} & =\left(\alpha^{i-2}-0\right) \prod_{0 \leq j \leq n-2, j \neq i-2}\left(\alpha^{i-2}-\alpha^{j}\right) \\
& =\alpha^{i-2} \cdot \alpha^{(i-2)(n-2)} \cdot(n-1) \\
& =\alpha^{(i-2)(n-1)}(n-1) \\
& =\left(\alpha^{n-1}\right)^{i-2}(n-1) \\
& =n-1
\end{aligned}
$$

Therefore we have

$$
w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\left(-1, \frac{1}{n-1}, \frac{1}{n-1}, \ldots, \frac{1}{n-1}\right)
$$

and

$$
(n-1) w=(-(n-1), 1,1, \ldots, 1)
$$

We claim that $-(n-1)$ is a square element in $R=G R\left(2^{m}, r\right)$. More precisely, let $f(x)=x^{2}+(n-1)$. Then we claim that $f(x) \equiv 0\left(\bmod 2^{m}\right)$ has a solution for all $m \geq 1$. By Lemma 3.1, we know that there is an integer solution for $f(x) \equiv 0\left(\bmod 2^{m}\right)$. Let $\beta$ be a solution for $f(x) \equiv 0\left(\bmod 2^{m}\right)$. Then $-(n-1)=\beta^{2}$ in $R=G R\left(2^{m}, r\right)$. Let $v=(\beta, 1,1, \ldots, 1)$. Then $G R S_{\frac{n}{2}}(\delta, v)$ is MDS self-dual by Theorem 2.7. The generator matrix of $G R S_{\frac{n}{2}}(\delta, v)$ is given by the following matrix $G$ :

$$
G=\left[\begin{array}{cccccc}
\beta & 1 & 1 & 1 & \cdots & 1  \tag{3.2}\\
0 & 1 & \alpha & \alpha^{2} & \cdots & \alpha^{n-2} \\
0 & 1 & \alpha^{2} & \left(\alpha^{2}\right)^{2} & \cdots & \left(\alpha^{n-2}\right)^{2} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 1 & \alpha^{\frac{n}{2}-1} & \left(\alpha^{2}\right)^{\frac{n}{2}-1} & \cdots & \left(\alpha^{n-2}\right)^{\frac{n}{2}-1}
\end{array}\right]
$$

Table 1. Positive integer pairs $\left(n, v_{2}(n)\right)$ such that $(n-$ 1) $\mid\left(2^{r}-1\right),\left(v_{2}(n) \geq 2, n \geq 8,3 \leq r \leq 10\right)$

| $r$ | $\left(n, v_{2}(n)\right)$ | $r$ | $\left(n, v_{2}(n)\right)$ |
| :---: | :---: | :---: | :---: |
| 3 | $(8,3)$ | 7 | $(128,7)$ |
| 4 | $(16,4)$ | 8 | $(16,4),(52,2),(256,8)$ |
| 5 | $(32,5)$ | 9 | $(8,3),(512,9)$ |
| 6 | $(8,3),(64,6)$ | 10 | $(12,2),(32,5),(1024,10)$ |

In Table 1, we give positive integer pairs $\left(n, v_{2}(n)\right)$ such that $(n-1) \mid$ $\left(2^{r}-1\right), v_{2}(n) \geq 2, n \geq 8$, and $3 \leq r \leq 10$. In Table 1, for the case $n=8,16,32,64,128,256,512,1024$, since $v_{2}(n) \geq 3$, by Theorem 3.2, we know that there exists an MDS self-dual code over $R=G R\left(2^{m}, r\right)$ with parameters $[n, n / 2, n / 2+1]$. The generator matrix $G$ of the code is given by Equation (3.2). In $G$, we should determine $\beta$. Following the proof of Lemma 3.1, we can determine the value $\beta$. We explain this in the following. Let $k_{0}$ be the smallest value such that $2+\left(v_{2}(n)-2\right) \cdot 2^{k_{0}-1} \geq$ $m$. Let $\beta \equiv a_{k_{0}}\left(\bmod 2^{m}\right)$. In Table 2, we give the values, $k_{0}, a_{k_{0}}, \beta$ for $n=8,16,32$, and $1 \leq m \leq 10$. For example, if $n=8$ and $m=7$, then since $v_{2}(n)=3, k_{0}$ is the smallest value such that $2+(3-2) \cdot 2^{k_{0}-1} \geq 7$. So, $k_{0}=4$. By the sequence formula,

$$
a_{1}=1, a_{\ell+1}=a_{\ell}-\frac{a_{\ell}^{2}+7}{2 a_{\ell}},(\ell \geq 1)
$$

we have

$$
a_{4}=31 / 3
$$

and

$$
\frac{31}{3} \equiv 31 \cdot 3^{-1} \equiv 31 \cdot 43 \equiv 53 \quad\left(\bmod 2^{7}\right)
$$

Therefore $\beta=53$. Note that $\beta$ is the solution of $f(x) \equiv 0\left(\bmod 2^{7}\right)$, i.e., $53^{2}+7=2816 \equiv 0\left(\bmod 2^{7}\right)$.

In Table 1 , for the two case $n=52$ and $n=12$, we have $v_{2}(52)=$ $v_{2}(12)=2$. By Theorem 1.3, there exists an MDS self-dual code of length 52 and length 12 over $R=G R\left(2^{m}, 8\right)$ and $R=G R\left(2^{m}, 10\right)$, respectively, $(m=1,2)$. But we can not apply Theorem 3.2 to this case, therefore we don't know the existence of an MDS self-dual code for $m \geq 3$. The main point of Theorem 3.2 is that $-(n-1)$ should be a square element of $R=G R\left(2^{m}, r\right)$. The following lemma shows that $-(n-1)$ is not a square element in $\mathbb{Z}_{2^{m}},(m \geq 3)$ if $v_{2}(n)=1,2$.

Table 2. $\left(k_{0}, a_{k_{0}}, \beta\right)$

| $n \backslash m$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | $(1,1,1)$ | $(1,1,1)$ | $(1,1,1)$ | $(2,-3,13)$ | $(3,-1 / 3,21)$ |
| 16 | $(1,1,1)$ | $(1,1,1)$ | $(1,1,1)$ | $(1,1,1)$ | $(2,-7,25)$ |
| 32 | $(1,1,1)$ | $(1,1,1)$ | $(1,1,1)$ | $(1,1,1)$ | $(1,1,1)$ |
| $n \backslash m$ | 6 | 7 | 8 | 9 | 10 |
| 8 | $(3,-1 / 3,21)$ | $(4,31 / 3,53)$ | $(4,31 / 3,181)$ | $(4,31 / 3,181)$ | $(4,31 / 3,693)$ |
| 16 | $(2,-7,57)$ | $(3,-17 / 7,89)$ | $(3,-17 / 7,217)$ | $(3,-17 / 7,217)$ | $(3,-17 / 7,729)$ |
| 32 | $(2,-15,49)$ | $(2,-15,113)$ | $(2,-15,241)$ | $(3,-97 / 15,369)$ | $(3,-97 / 15,881)$ |

Table 3. Existence of MDS self-dual codes of code length $n$ over $G R\left(2^{m}, r\right),(m \geq 2,1 \leq r \leq 5,4 \leq n \leq 32)$

| $r \backslash n$ | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |
| 2 | O |  |  |  |  |  |  |  |
| 3 | X | O |  |  |  |  |  |  |
| 4 | O | $?$ | $?$ | O |  |  |  |  |
| 5 | X | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | O |

Lemma 3.3. Let $n$ be an even positive integer such that $n \not \equiv 0$ $(\bmod 8)$. Let $f(x)=x^{2}+(n-1)$. Then there is no integer solution for $f(x) \equiv 0\left(\bmod 2^{m}\right)$ for $m \geq 3$.

Proof. Suppose that $\beta$ is an integer solution of $f(x) \equiv 0\left(\bmod 2^{m}\right)$, ( $m \geq 3$ ). Then

$$
\beta^{2}+(n-1) \equiv 0 \quad(\bmod 8) .
$$

Since $n-1$ is odd, $\beta$ should be odd and $\beta^{2} \equiv 1(\bmod 8)$. Therefore $\beta^{2}+(n-1) \equiv n \not \equiv 0(\bmod 8)$. We conclude that $f(x) \equiv 0\left(\bmod 2^{m}\right)$ has no solution for $m \geq 3$.

Although $-(n-1)$ is not a square element in $\mathbb{Z}_{2^{m}},(m \geq 3)$ if $v_{2}(n)=$ 2 , it is still possible that $-(n-1)$ is a square element in $R=G R\left(2^{m}, r\right)$. We give the following open problem.

Open Problem: Let $n$ be a positive integer such that $n \equiv 0(\bmod 4)$ and $n \not \equiv 0(\bmod 8)$, and $(n-1) \mid\left(2^{r}-1\right)$. Let $f(x)=x^{2}+(n-1)$. Does the equation $f(x)=0$ have a solution in $G R\left(2^{m}, r\right),(m \geq 3)$ ?

In Table 3, we show the existence of MDS self-dual codes of length $n$ over $G R\left(2^{m}, r\right),(m \geq 2,1 \leq r \leq 5,4 \leq n \leq 32)$. In this table, ' X ', ' O ', and '?' represents the nonexistence, existence, and tentatively unknown existence, respectively. Using Theorem 1.2 and Theorem 3.2, the table can be verified.

## 4. Summary

In this paper, we studied the generalized Reed-Solomon codes over Galois rings and the stronger version of Hensel's lemma. Using these we proved that there exists an MDS self-dual code over $G R\left(2^{m}, r\right)$ with parameters $[n, n / 2, n / 2+1]$ if $(n-1) \mid\left(2^{r}-1\right)$ and $8 \mid n$. Many aspects remain to be studied in the future, including the open problem presented in the main section. The question marks '?' in Table 3 are also possible research topics in the future.

## References

[1] Keith Conrad, Hensel's lemma,
https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf
[2] S.T. Dougherty, K. Shiromoto, $M D R$ Codes over $\mathbb{Z}_{k}$, IEEE-IT, 46 (2000), 265269.
[3] X. Fang, K. Lebed, H. Liu, J. Luo, New $M D S$ self-dual codes over finite fields of odd characteristic, Des. Codes Cryptogr., 88 (2020), 1127-1138.
[4] Fernando Q. Gouvêa, p-adic Numbers An Introduction, Second Edition, Springer, 1997, Corrected 3rd printing 2003.
[5] M. Grassl, T.A. Gulliver, On self-dual MDS codes, In: Proceedings of ISIT (2008), 1954-1957.
[6] S. Han, MDS self-dual codes and antiorthogonal matrices over Galois rings, MDPI Information, 10 (2019), 1-12.
[7] S. Han, On the existence of $M D S$ self-dual codes over finite chain rings, J. Chungcheong Math. Soc., 33 (2020), 255-270.
[8] S. Han, On the construction of MDS self-dual codes over Galois rings, Journal of Applied and Pure Mathematics, 4 (2022), 211-219.
[9] W.C. Huffman, V.S. Pless, Fundamentals of Error-correcting Codes, Cambridge: Cambridge University Press, 2003.
[10] L. Jin and C. Xing, New MDS Self-Dual Codes From Generalized Reed?Solomon Codes, IEEE-IT, 63 (2017), 1434-1438.
[11] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, The Netherlands: North-Holland, 1977.
[12] G.H. Norton, A. Salagean, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebra Engrg. Comm. Comput., 10 (2000), 489-506.
[13] G.H. Norton, A. Salagean, On the key equation over a commutative ring, Designs, Codes and Cryptography, 20 (2000), 125-141.
[14] G. Quintin, M. Barbier, C. Chabot, On Generalized Reed-Solomon Codes Over Commutative and Noncommutative Rings, IEEE-IT, 59 (2013), 5882-5897.
[15] Z.-X. Wan, Finite Fields and Galois Rings, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
[16] H. Yan, A note on the constructions of MDS self-dual codes, Cryptogr. Commun., 11 (2019), 259-268.

Sunghyu Han
School of Liberal Arts
KoreaTec
Cheonan 31253, Republic of Korea
E-mail: sunghyu@koreatech.ac.kr


[^0]:    Received April 10, 2023; Accepted August 21, 2023.
    2020 Mathematics Subject Classification: Primary 94B05; Secondary 13B05.
    Key words and phrases: Galois ring, MDS code, self-dual code.
    This paper was supported by the Education and Research Promotion Program of KOREATECH in 2023.

