
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 36, No. 3, August 2023
http://dx.doi.org/10.14403/jcms.2023.36.3.171

UNIVERSALLY MEASURE CONTINUUM-WISE

EXPANSIVE HOMOCLINIC CLASSES

Daejung Kim, Seunghee Lee, and Junmi Park

Abstract. Investigating local dynamics requires precise control
to effectively manage the subtle differences that distinguish it from
global dynamics. This paper aims to study the localized perspective
of the recently proposed continuum-wise expansive measures [13].
Let f : M → M be a diffeomorphism on a closed smooth manifold
M and let p be a hyperbolic periodic point of f . We prove that
if the homoclinic class Hf (p) of f associated to p is C1-robustly
measure continuum-wise expansive then it is hyperbolic.

1. Introduction

Let M be a closed connected smooth Riemannian manifold without
boundary. Denote by Diff(M) be the set of diffeomorphisms f : M →
M with the C1 topology. Let d be the distance on M induced from a
Riemannian metric ∥ · ∥ on the tangent bundle TM . A diffeomorphism
f is said to be expansive if there is e > 0 such that for any x, y ∈ M if
d(f i(x), f i(y)) < e for all i ∈ Z then x = y. Recently, there has been a lot
of research on various expansive (N -expansive [9], countably expansive
[11], continuum-wise expansive [5], etc) systems of dynamical systems.
They play a key role in the study of qualitative theories of dynamical
systems such as stability.
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In this study, we consider a general type of measure expansive sys-
tems which is called measure continuum-wise expansive system [13].
Continuum-wise expansiveness is stronger than pointwise expansiveness,
which makes it a more challenging property to study, but also a more
powerful one for characterizing chaotic behavior [5]. The continuum con-
cept has recently been spotlighted as one of the interesting research
subjects by many researchers in dynamical systems [1, 2, 10].

We introduce the essential concepts of continuum-wise expansive sys-
tems. A continuum-wise expansive system is a type of dynamical system
that the system is sensitive to small perturbations across a set of points
in the underlying space, called the continuum. By a continuum, we mean
a compact metric connected nondegenerate space. A subcontinuum is
a nonempty subset which is a continuum with respect to the induced
topology. We say that it is degenerated if it reduces to a single point. A
diffeomorphism f is said to be continuum-wise expansive (cw-expansive
for short) if there is a constant e > 0 such that for any nondegener-
ate continuum A there is an integer n ∈ Z such that diamfn(A) ≥ e,
where diamA = sup{d(x, y) : x, y ∈ A} for any subset A of M . Here
the constant e is called an cw-expansive constant for f . It is clear that
if a diffeomorphism is expansive then it is cw-expansive, but the con-
verse is not true. It is well known that S2 does not admit an expansive
diffeomorphism, but it admits a cw-expansive diffeomorphism [3]

A homoclinic class is a set of points in phase space that share the
same unstable and stable manifolds of a common hyperbolic equilib-
rium or periodic orbit. Homoclinic classes can exhibit complex and
interesting dynamical behaviors in diffeomorphisms, such as the exis-
tence of horseshoe maps and other types of chaos. A point x ∈ M is
called a periodic point if there is π(x) > 0 such that fπ(x)(x) = x,
where π(x) is the period of x. A periodic point p with period π(p) > 0

is considered hyperbolic if the derivative Dpf
π(p) has no eighenvalues

with norm one. Let Per(f) = {x ∈ M : x is a periodic point off}. Let
p, q ∈ Per(f) be hyperbolic. We say that p and q are homoclinically
related if W s(p) ⋔ W u(q) ̸= ∅ and W u(p) ⋔ W s(q) ̸= ∅, and in such a

case, we write p ∼ q. Let us denote Hf (p) = {q ∈ Per(f) : p ∼ q}. It is
known that Hf (p) is a closed, f -invariant, and transitive set.

We say that Λ is hyperbolic if the tangent bundle TΛM has a con-
tinuous Df -invarinat splitting Es ⊕ Eu and there exist constants C >
0, 0 < λ < 1 such that

∥Dfn|Es(x)∥ ≤ Cλn and ∥Df−n|Eu(x)∥ ≤ Cλn
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for all x ∈ Λ and n ≥ 0. It is known that if Λ is hyperbolic for f then f
is expansive. If Λ =M then we say that f is Anosov.

The main purpose of this paper is to characterize homoclinic classes
Hf (p) containing a hyperbolic periodic point p by making use of a gen-
eral type of continuum-wise expansiveness under C1 open condition.
This is a generalization of the main result in [6].

Main Theorem. Let p be a hyperbolic periodic point of f ∈ Diff(M).
If the homoclinic class Hf (p) is C1-robustly measure continuum-wise
expansive, then it is hyperbolic.

2. Measure Continuum-wise Expansiveness

Measure theory provides a rigorous mathematical framework for study-
ing the behavior of differentiable dynamical systems, and it allows us
to make precise statements about the long-time behavior of these sys-
tems. In a similar vein, Shin study Kato’s continuum-wise expansivity
for measure view points through the notion of continuum-wise expan-
sive measure [13] which suggest a link between the continuum theory
and measurable dynamics. We introduce the extended cw-expansiveness
to measures through to the notion of cw-expansive measure.

Definition 2.1. [13] Let µ be a Borel probability measure which is
not necessarily f -invariant. We say that f is measure continuum-wise
expansive (or simply, measure cw-expansive, µ-cw-expansive) if there is
c > 0 such that for every subcontinuum A of M with µ(A) > 0 there is
n ∈ Z such that diam(fn(A)) > c.

Note that if a diffeomorphism f :M →M is µ-cw-expansive for µ ∈
M(M), then µ is clearly nonatomic. This means that µ-cw-expansive
system is generalized of cw-expansive system. This property holds almost
everywhere.

One of the topics recently actively studied is to understand how ro-
bust dynamics properties on maniolds characterize dynamics properties
on tangent bundles. If there is no further mention, we follow the mea-
sure defined in Definition 2.1. We say that f is C1-robustly measure
cw-expansive if there is a C1-neighborhood U(f) ⊂ Diff(M) of f such
that for any g ∈ U(f), g is measure cw-expansive.

With these motivations we introduce a general measure cw-expansive
concept in this work. Let M(M) be the set of all Borel probability
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measures on M endowed with the weak∗ topology, and let M∗(M) be
the set of nonatomic measures µ ∈ M(M).

Definition 2.2. For any µ ∈ M∗(M), we say that f ∈ Diff(M)
is universally measure continuum-wise expansive (or simply, universally
measure cw-expansive, universally µ-cw-expansive) if there is c > 0 such
that for every subcontinuum A of M , if diam(fn(A)) ≤ c for all n ∈ Z
then µ(A) = 0.

In the absence of explicit mention, we consider measure cw-expansive
ness shall be regarded as universally measure cw-expansiveness through-
out this paper.

We want to extend the locality by proving that the dynamical prop-
erties of the whole system hold true for local subsystems. To establish
this localization, we introduce the local version as follows.

Definition 2.3. We say that f ∈ Diff(M) has the C1-robustly mea-
sure cw-expansive on a subset Λ of M if a C1 neighborhood U(f) of f
and a neighborhood U of Λ exist such that

(i) Λ = ∩n∈Zf
n(U), and

(ii) for any g ∈ U(f), g has the measure cw-expansive property on the
continuation Λg of Λ.

3. Proof of Main Theorem

To prove the main theorem, we have the same philosophy of Sam-
barino and Vietz in [12]. We need several lemmas for completing the
proof. We recall the concept of a local star condition. For any closed
f -invariant set Λ ⊂ M , we say that a diffeomorphism f is a star on
Λ if a C1 neighborhood U(f) of f and a neighborhood U of Λ exist
such that for any g ∈ U(f), every p ∈ Λg ∩ P (g) is hyperbolic, where
Λg = Λg(U) =

⋂
n∈Z g

n(U) is the continuation of Λ. We denote by F(Λ)
the set of all diffeomorphisms that are stars on Λ.

Lemma 3.1. Let Λ be a closed invariant set of f . If f is C1-robustly
measure cw-expansive on Λ, then f ∈ F(Λ).

Proof. Suppose that f exhibits the C1 robustly measure cw-expansive
property on Λ. By the definition of F(Λ), a C1 neighborhood U(f) of
f and a neighborhood U of Λ exist such that for any g ∈ U(f), every
p ∈ Λg ∩ P (g) is hyperbolic.

By contradiction, we assume that f /∈ F(Λ). Since f is C1-robustly
measure cw-expansive, there exists a C1-neighborhood U(f) ⊂ Diff(M)
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of f such that for any g ∈ U(f) and any µ ∈ M∗
g(M), g is µ-cw-

expansive. Since f /∈ F(Λ), we can take g ∈ U(f) and non-hyperbolic
periodic point p of g.

By Franks’ Lemma [4], with a small modification of the map g with

respect to the C1-topology, we may assume that Dpg
π(p) has only one

eigenvalue λ with modulus equal to 1 (or only one pair complex conju-
gated eigenvalues). Denote by Ec

p the eigenspace corresponding to λ.

Case 1 : dimEc
p = 1

Suppose that λ = 1 for simplicity. Then we have ε0 > 0 and ϕ ∈ U(f)
such that

ϕπ(p)(p) = gπ(p)(p) = p

and

ϕ(x) = expgi+1(p) ◦Dgi(p)g ◦ exp−1
gi(p)

(x)

if x ∈ Bε0(g
i(p)) for 0 ≤ i ≤ π(p)− 2, and

ϕ(x) = expp ◦Dgπ(p)−1(p)g ◦ exp
−1
gπ(p)−1(p)

(x)

if x ∈ Bε0(g
π(p)−1(p)).

Since the eigenvalue λ of Dpg
π(p)|Ec

p
is 1, there is a small arc

Lp ⊂ Bε0(p) ∩ expp(Ec
p(ε0))

with its center at p such that

· ϕi(Lp) ∩ ϕj(Lp) = ∅ for 0 ≤ i ̸= j ≤ π(p)− 1,

· ϕπ(p)(Lp) = Lp, and

· ϕπ(p)|Lp is the identity map.

Here Ec
p(ε0) is the ε0-ball in E

c
p centered at the origin O(p).

Let mLp be a normalized Lebesgue measure on Lp. We define µ ∈
Mϕ(M) by

µ(C) =
1

π(p)

π(p)−1∑
j=0

mLp(ϕ
−j(C ∩ ϕj(Lp)))

for any Borel set C ofM . We can take an expansive constant δ = ε0 > 0.
Since ϕπ(p)|Lp is the identity map,

{y ∈ Lp : d(p, y) < δ1} ⊂ Γδ(p).

Thus, we have

µ(Γδ(p)) ≥ µ({y ∈ Lp : d(p, y) < δ1}) > 0,
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which implies ϕ is not µ-cw-expansive. But this contradicts with ϕ ∈
U(f).

Case 2 : dimEc
p = 2

To avoid notational complexity, we consider only the case g(p) = p.
Then we have ε0 > 0 and ϕ ∈ U(f) such that

ϕ(p) = g(p) = p

and
ϕ(x) = expg(p) ◦Dpg ◦ exp−1

p (x)

if x ∈ Bε0(p). With a small modification of the mapDpg, we may suppose

that there is l > 0 such that Dpg
l(v) = v for any v ∈ Ec

p(ε0).
Take v0 ∈ Ec

p(ε0) such that ∥v0∥ = ε0/4, and set

Jp = expp({t · v0 : 1 ≤ t ≤ 1 + ε0/4}).
Then Jp is an arc such that

· ϕi(Jp) ∩ ϕj(Jp) = ∅ for 0 ≤ i ̸= j ≤ l − 1,

· ϕl(Jp) = Jp, and

· ϕl|Jp is the identity map.

Let mJp be the normalized Lebesgue measure on Jp and set

µ(C) =
1

l

l−1∑
j=0

mJp(ϕ
−j(C ∩ ϕj(Jp)))

for a Borel set C. Then µ ∈ M∗
ϕ(M). Thus ϕ is not µ-cw-expansive

which contradicts ϕ ∈ U(f).

By Proposition II.1 in [7] and the above lemma, we get the following
lemma.

Lemma 3.2. Suppose that the homoclinic class Hf (p) is C
1-robustly

measure cw-expansive, and le U0(f) as the Lemma 3.1. Then there are
constants C > 0, 0 < λ < 1 and m > 0 such that

• for any g ∈ U0(f), if q ∈ Λg ∩P (g) has minimum period π(q) ≥ m,
then

k−1∏
i=0

∥Dgim(q)g
m|Es

gim(q)
∥ < Cλk and

k−1∏
i=0

∥Dg−im(q)g
m|Eu

g−im(q)
∥ < Cλk

where k = [π(q)/m].
• Hf (p) admits a dominated splitting THf (p)M = E⊕F with dimE =

index(p).
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If an invariant set Λ admits a dominated splitting, then Mañé has
shown the existence of locally invariant manifolds everywhere on Λ which
are tangent to the invariant subspaces of the splitting [8]. From [8], the
setW cs

ε (x) andW cu
ε (x) are called the local center stable and local center

unstable manifolds of x, respectively. The following lemma can be proved
similarly to that of Lemma 4 in [12].

Lemma 3.3. Let Hf (p) be the homoclinic class of f associated to a
hyperbolic periodic point p, and suppose that Hf (p) is C

1-robustly mea-
sure cw-expansive. Then for C, λ as in Lemma 3.2 and δ > 0 satisfying
λ′ = λ(1+δ) < 1 and q ∼ p, there exists 0 < ε1 < ε such that if for all 0 ≤
n ≤ π(q) it holds that for some ε2 > 0, fn(W cs

ε2 (q)) ⊂ W cs
ε1 (f

n(q)) then

fπ(q)(W cu
ε2 (q)) ⊂W cs

Cλ′π(q)ε2
(q). Similarly, if f−n(W cu

ε2 (q)) ⊂W cu
ε1 (f

−n(q))

then f−π(q)(W cu
ε2 (q)) ⊂W cu

Cλ′π(q)ε2
(q).

If Hf (p) is not hyperbolic then it may contain periodic points having
different indices. Recall that a compact f -invariant set Λ has a local
product structure if given ε > 0 there exists a δ > 0 such that if d(x, y) <
δ and x, y ∈ Λ then

∅ ≠W s
ε (x) ∩W u

ε (y) ⊂ Λ.

Lemma 3.4. Let Hf (p) be C
1-robustly measure cw-expansive. Then

Hf (p) has a local product structure. Moreover, for any q ∈ Hf (p)∩P (f),
index(q) = index(p).

Proof. To prove this lemma, we adapt the techniques Lemma 3.5 in
[6]. Let U be a locally maximal neighborhood of Hf (p), and let e > 0
be a measure cw-expansive constant of f on Hf (p). Then we have ε > 0
such that Bε(Hf (p)) ⊂ U . Let ε1 > 0 be a constant such that ε1 <
min{e, ε} and sup{diamW cs

ε1 (q) : q ∈ Hf (p)} < ε. For any q ∈ Hf (p)
with q ∼ p, we let

ε(q) = sup{ε > 0 : fn(W cs
ε (q)) ⊂W cs

ε1 (f
n(q)) for all n ≥ 0}.

Let ε′ = inf{ε(q) : q ∈ P (f) with q ∼ p}. Then ε′ > 0 which means
fn(W cs

ε′ (q)) ⊂W cs
ε1 (f

n(q)) for all n ≥ 0. Suppose not, we have a sequence
{qn} with qn ∼ p such that ε(qn) → 0 as n → ∞. Hence we have
0 < mn < π(qn) with mn → ∞ as n → and yn ∈ W cs

ε(qn)
(qn) such that

d(fmn(qn), f
mn(yn)) = ε1. Let In = [fmn(qn), f

mn(yn)] be an arc joining
fmn(qn) with fmn(yn) ∈ W cs

ε1 (f
mn(qn)), and let Jn = f−mn(In). Then

Jn ⊂ W cs
ε(qn)

(qn) and f i(Jn) ⊂ W cs
ε1 (f

i(qn)), where 0 ≤ i ≤ π(qn). By

Lemma 3.3, we can assume that In converges to a closed arc joining
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x to y, say, I. Let mI be the normalized Lebesgue measure on I. We
define µ ∈ M(M) by µ(C) = mI(C ∩ I) for any Borel set C of M .
Then µ ∈ M∗(M). Since diam f j(I) < ε1 for all j ∈ Z, we get 0 <

µ(Γf
ε1(x) ∩ I) ≤ µ(Γε1(x)). This is contradiction.

Let ε2 be from Lemma 3.3. For any y ∈ W cs
ε2 (q) and z ∈ W cu

ε2 (q), we
have limn→∞ d(fn(q), fn(y)) = 0 and limn→∞ d(f−n(q), f−n(y)) = 0.

If ε = min{ε′, ε1}, we can see that fn(W cs
ε (x)) ⊂ W cs

ε1 (f
n(x)) for

x ∈ Hf (p) and all n ≥ 0. Moreover, if y ∈ W cs
ε (x) ∩ Hf (p) then

d(fn(x), fn(y)) → 0 as n→ ∞. Consequently we have W cs
ε (x) =W s

ε (x)
for any x ∈ Hf (p). Simiarly we can show that W cu

ε (x) =W u
ε (x) for any

x ∈ Hf (p).

We can take δ > 0 such W s
ε′(x) ∩W u

ε′(y) ̸= ∅, whenever d(x, y) < δ
and x, y ∈ Hf (p). By the λ-lemma, we can see that W s

ε′(x) ∩W u
ε′(y) ⊂

Hf (p). This established that Hf (p) has a local product structure. Since

Hf (p) = {q ∈ Ph(f) : q ∼ p} and Hf (p) has a local product structure,
for any periodic point q in Hf (p), we know that W s(p) ⋔ W u

ε′(q) ̸= ∅
and W u(p) ⋔W s

ε′(q) ̸= ∅. Thus we have index(q) = index (p).

Proof of Main Theorem To prove that Hf (p) is hyperbolic, it is
enough to show that

lim inf
n→∞

∥Dfn|E(x)∥ = 0 and lim inf
n→∞

∥Df−n|F (x)∥ = 0,

for all x ∈ Hf (p). Suppose lim infn→∞ ∥Dfn|E(x)∥ ̸= 0 for some x ∈
Hf (p). For the constant m ∈ Z+ taken in Lemma 3.2, let ψ(x) =
log∥Dxf

m|E(x)∥. Then we have a sequence {jn} and a fm-invariant prob-
ability measure µ on Hf (p) satisfying∫

Hf (p)
ψdµ = lim

n→∞

1

jn

jn−1∑
i=0

log∥Dfmi(x)f
m|E(fmi(x)∥ ≥ 0.

By Birkhoff’s theorem, together with Mañé’s Ergodic Closing Lemma,
we can find q ∈

∑
f ∩Hf (p) such that

lim
n→∞

1

n

n−1∑
i=0

log∥Dfmi(q)f
m|E(fmi(q)∥ ≥ 0.

Here
∑

f is the set of Mañé’s Ergodic Closing Lemma. Since q is not
a periodi point of f , for C > 0 and λ in Lemma 3.2 we can choose
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λ < γ < 1 and n0 such that

1

n

n−1∑
i=0

log∥Dfmi(q)f
m|E(fmi(q)∥ ≥ logγ

when n > n0. By Mañé’s ergodic closing lemma we can find f̃ ∈ U0(f)

and q̃ ∈ Λf̃ ∩ P (f̃) such that the f̃ -orbit of q̃ ε-shadows a part of

the f -orbit of g for arbitrarily small ε > 0. Then q̃ is hyperbolic and
index(q̃)=index(p). We can obtain g ∈ V(f̃) ⊂ U0(f) such that

k−1∏
i=0

∥Dgim(q̃)g
m|E(gmi(q̃))∥ ≥ γk ⇒

k−1∏
i=0

∥Dgim(q̃)g
m|E(gmi(q̃))∥ < Cλk.

Observe that we can choose the period π(q̃) of q̃ large enough so that
γk ≥ Cλk, where k = [π(q̃)/m]. This is a contradiction and hence
lim infn→∞ ∥Dfn|E(x)∥ = 0 for each x ∈ Hp(f). Similarly we can show

that lim infn→∞ ∥Df−n|F (x)∥ = 0 for each x ∈ Hf (p).
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