DOI QR코드

DOI QR Code

Evaluation of Characteristics of Sludge generated from Active Treatment System of Mine Drainage

광산배수의 적극적 처리시설에서 발생하는 슬러지 특성 평가

  • Jung-Eun Kim (National Environment Lab. (NeLab)) ;
  • Won Hyun Ji (Department of Energy & Climate Environment Fusion Technology, Graduate shool Hoseo University)
  • 김정은 (환경기술정책연구원 (NeLab)) ;
  • 지원현 (호서대학교 일반대학원 에너지기후환경융합기술학과)
  • Received : 2023.03.13
  • Accepted : 2023.08.04
  • Published : 2023.08.30

Abstract

Acid mine drainage(AMD) treatment is classified as both passive and active treatment. During the treatment, about 5,000 tons of neutralization sludge is generated as a by-product per year in Korea. This study was conducted to evaluate the characteristics of sludge generated from physico·chemical treatment processes as an active treatment from 5 different sources (D, H, S, T, Y) and the possibility of the sludges being recycled. The sludges have a pH range of 5.86 ~ pH 7.89, and a water content range of 51% ~ 82%. Most of particle sizes were less than 25 ㎛. In analysis of inorganic elements, the concentration of Al, Fe, and Mn were between 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, and 3,472 mg/kg ~ 11,743 mg/kg, respectively. The concentration of As and Zn in sludge-T, Cd in sludge-D, Ni in sludge-H, Zn in sludge-S, and Cd in sludge-Y exceeded the soil contamination standards of Korea. The results from 2 separate kinds of leaching test, the Korea Standard Leaching Test(KSLT) and Toxicity Characteristic Leaching Procedure(TCLP), showed that all the sludges met the Korea groundwater standards. From the XRD and SEM-EDS analysis, the peaks of calcite and quartz were found in the sludges. The sludge also had a high proportion of Fe and O, and the majority of the composition was amorphous iron hydroxide.

산성광산배수 처리방법은 적극적 처리방식과 소극적 처리방식이 일반적으로 사용되고 있으며, 이때 발생되는 부산물인 슬러지는 국내에서 약 5천 톤/년으로 발생하고 있다. 본 연구는 적극적 처리방식 중 물리·화학적 처리방식으로 정화 후 발생되는 슬러지의 특성을 조사하여 재활용 가능여부를 검토하기 위함이다. 5개소(D, H, S, T, Y) 수질정화시설의 슬러지의 특성을 물리·화학적 분석을 통해 검토하였다. 그 결과 pH는 pH 5.86 ~ pH 7.89로 측정되었고, 수분함량은 51 % ~ 82 %로 분석되었으며, 입자크기는 대부분 25 ㎛보다 작은 미립자로 구성되었음을 확인할 수 있었다. ICP-OES를 이용한 슬러지 내 무기물질 분석결과, Al, Fe, Mn의 농도범위는 각각 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, 3,472 mg/kg ~ 11,743 mg/kg로 조사되어 고농도로 존재함을 확인 할 수 있었다. 그 외 무기물질 중 중금속류에 대해서는 T-슬러지는 As와 Zn, D-슬러지는 Cd, H-슬러지는 Ni, S-슬러지는 Zn, Y-슬러지는 Cd의 농도가 토양오염우려기준을 초과하였다. 또한 슬러지의 용출 특성을 알기위해 폐기물 용출시험(KSLT) 및 TCLP 시험을 진행하였다. 슬러지 재활용시 용출되어 지하수에 미치는 영향 확인을 위해 지하수 수질기준(생활용수) 20개 항목에 대하여 수행하였다. 용출시험결과 특정유해물질 16개 항목에서 모두 불검출로 확인되었으며, 일반항목 4개 항목에 대해서는 모두 생활용수 기준치 이내로 만족하였다. XRD, SEM-EDS의 분석결과, 슬러지는 주로 방해석, 석영의 패턴을 보였으며, 높은 Fe, O의구성비율로철수산화물이높은비중을차지하는것으로보였다. 이를 통해서 비매체접촉형 방식의 재활용의 가능성이 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2022년도 호서대학교의 재원으로 학술연구비 지원을 받아 수행된 것임(20220239).

References

  1. An, J.M., Lee, H.J., Park, I.S., Kim, K.H. and Choi, S.I. (2010) A study of Fe Removal Efficiency of Acid Mine Drainage by Physico-chmical Treatment. J. Korean Soc. Miner. Energy Resour. Eng., v.47, n.4, p.530-538.
  2. Antelo, J., Arce, F. and Fiol, S. (2015) Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions. Chem. Geol., v.410, p.53-62. doi: 10.1016/j.chemgeo.2015.06.011
  3. Choi, K.W., Park, S.S., Kang, C.U., Lee, J.H. and Kim, S.J. (2021) A Comparison study of alum sludge and ferric hydroxide based adsorbents for arsenic adsorption from mine water. Econ. Environ. Geol., v.54, n.6, p.689-698. doi: 10.9719/EEG.2021.54.6.689
  4. Cui, M.C., Lim, J.H., Phyung, Y., Jang, M., Shim, Y.S. and Khim, J.H. (2008) Dehydration of a coal mine drainage sludge for the potential landfill cover. Korean Soc. Soil Sci. Fert., v.41, n.5, p.324-329.
  5. Hwang, W.J., Oh, T.G., Lee, J.U., Kim, D.M. and Cha, J.M. (2016) Characteristic research of sludges in passive mine water treatment system of Waryong, Donghae(6th adit) and Honam mine. J. Korean Soc. Miner. Energy Resour. Eng., v.53, n.5, p.489-497. doi: 10.12972/ksmer.2016.53.5.489
  6. Jang, M., Lee, H.J. and Shim, Y.S. (2008) Coagulation and flocculation of fine suspended solids in mine drainage. 2008 Mine Reclamation Symposium, p.439.
  7. Joung, H.T., Kim, K.H., Yoo, J.I., Choi, Y.C., Yoon, K.S. and Seo, Y.C. (2002) Physico-chemical and leaching characteristics of heavy metals by different test methods for ashes from several municipal solid waste incinerators. J. Korea Soc. Waste Manag., v.19, n.4, p.407-417.
  8. Kim, J.E. and Ji, W.H. (2022) Effect of soil sample pretreatment methods on total heavy metal concentration. J. Soil Groundw. Environ., v.27, n.4, p.63-74. doi: 10.7857/JSGE.2022.27.4.063
  9. Kim, S.D., Shin, J.C., Lee, D.S. and Ji, W.H. (2019) Usage of acid mine drainage sludge for removal from biogas. Proceedings of the 2019 spring conference of the Korea Society of Waste Management, p.86
  10. Kim, T.K., Kim, H.J., Kim, Y.K. and Ko, G.B. (2015) Characteristics of thermal hydrolysis process according to amount of the dehydrated sludge injection. Korean Geo-Environmental Society conference, seoul, Korea, p.108-111.
  11. KOMIR(Korea Mine Rehabilitation and Mineral Resources Corp.) (2022) Information on location of water purification facility and flow rate. Press release in June. 20
  12. Kwon, H.H. and Nam, G.S. (2007) Mine Reclamation Engineering, DongHwa Technology Publishing Co., p.206-207.
  13. Lee, J.H. and Kim, S.J. (2021) A study of fluoride adsorption in aqueous solution using iron sludge based adsorbent at mine drainage treatment facility. Econ. Environ., Geol., v.54, n.6, p.709-716. doi: 10.9719/EEG.2021.54.6.709
  14. Lee, J.Y., Bae, S.Y. and Woo, S.H. (2011) Evaluation of field applicability with coal mine drainage sludge(CMDS) as a liner : part1 : physico-chemical characteristics of CMDS and a mixed liner. Korean Geosynthetic Soc., v.10, n.2, p.67-72. doi: 10.12814/jkgss.2011.10.2.067
  15. Lee, N.Y., You, M.Y., Lee, J.M., Kim, S.H. and Song, P.K. (2022) Performance of Insoluble IrO2 Anode for sewage sludge cake electrodehydration application with respect to operation conditions. Coatings, v.12, n.6, p.724. doi: 10.3390/coatings12060724
  16. Lee, S.H., Kwon, H.H., Oh, M.A., Lee, J.Y. and Kim, D.M. (2012) Feasibility tests for treating fine suspended solids from mining drainage, using various media by column methods - A case from H coal mine. J. Soil Groundw. Environ., v.17, n.6, p.112-118. doi: 10.7857/JSGE.2012.17.6.112
  17. Mamindy-Pajany, Y., Hurel, C., Marmier, N. and Romeo, M. (2009) Arsenic adsorption onto hematite and goethite. Chimie, v.12, p.876-881. doi: 10.1016/j.crci.2008.10.012
  18. Mine Reclamation Corp. (2021) Journal of reclamation technology and policy. v.21
  19. NIER(National Institute of Environmental Research) (2022) Korea standard methods for soil analysis
  20. NIER(National Institute of Environmental Research) (2021) Korea standard methods for waste analysis
  21. News Todayenergy : Mine Reclamation Corp., (access date : March 15, 2016) Yeongdong coal mine residents tour of water purification facility, http://www.todayenergy.kr/news/articleView.html?idxno=112217
  22. Oh, S.J., Oh, M.A. and Lee, J.Y. (2021) An experimental study on soil pavements using waste mine sludge and synthetic fibers, J. Korea Soc. Waste Manag., v.38, n.3, p.231-238. doi: 10.9786/kswn.2021.38.3.231
  23. Oh, T.G., Hwang, W.J., Lee, J.U. and Cha, J.M. (2016) Precipitation of acid mine drainage using coagulants and flocculants. J. Korean Inst. of Resources Recycling., v.25, n.3, p.3-10. doi: 10.7844/kirr.2016.25.3.3
  24. Park, Y.G., Park, J.S. and Hong, S.J. (2005) Neutralization treatment of acid mine drainage using Ca(OH)2. J. Korea Ind. Eng. Chem., v.16, n.3, p.391-396.
  25. Shin, J. H., Park, J.Y. and Kim, Y.K. (2021) Mineralogical and geochemical characteristics of the precipitates in acid mine drainage of the Heungjin-Taemaek coal mine. Econ. Environ. Geol., v.54, n.2, p.299-308. doi: 10.9719/EEG.2021.54.2.299
  26. Song, Y.J., Lee, G.S., Shin, K.H., Kim, Y.C., Seo, B.W. and Yoon, S.N. (2012) Adsorption of heavy metals on sludge from the treatment process of acid mine drainage. J. Korean Inst. of Resources Recycling., v.21, n.4, p.35-43. doi: 10.7844/kirr.2012.21.4.035
  27. Sparks, D.L. (1995) Environmental soil chemistry. Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto, p.24-25.
  28. Taylor, J., Pape, S. and Murphy, N. (2005) A summary of passive and active treatment technologies for aicd and metalliferous drainage(AMD), Proceedings of the Fifth Australian Workshop on Acid Drainage
  29. Tian, G., Li, L., Liu, B., Zhang, T., Hu, X., Zhang, L. and Bian, B (2022) Enhancing the dewaterability of the municipal sludge by flocculant combined with skeleton builder. Environmental Technology & Innovation, v.25, doi: 10.1016/j.eti.2021.102166
  30. Tien, C.T. and Hung, C.P. (1987) Adsorption behavior of Cu(II) onto sludge particulate surfaces. J. Env. Eng., v.113, n.2, p.285-298. doi: 10.1061/(ASCE)0733-9372(1987)113:2(285)
  31. U. S. Environmental Protection Agency : SW-846 Test Method 1311, Toxicity Characteristic Leaching Procedure, part of test methods for evaluating solid waste, physical/chemical methods (updated on September 1, 2022)
  32. Yoo, J.C., Ji, S.W. and Shin, H.Y. (2018) Leaching characteristics oh heavy metals in the bottom ash from circulating fluidized bed combustion, in order for application to limestone mine backfilling. J. Korean Soc. Miner. Energy Resour. Eng., v.55, n.2, p.97-105. doi: 10.12972/ksmer.2018.55.2.97
  33. Zhao, Z., Jia, Y., Xu, L. and Zhao, S. (2011) Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Research. v.45, n.19, p.6496-6504. doi: 10.1016/j.watres.2011.09.051