DOI QR코드

DOI QR Code

Application of RTI to Improve Image Clarity of a Trace Fossil Cochlichnus Found from the Jinju and Haman Formations

  • Sangho Won (Jinju Pterosaur Tracks Museum) ;
  • Dal-Yong Kong (National Research Institute of Maritime Cultural Heritage)
  • Received : 2023.08.16
  • Accepted : 2023.08.27
  • Published : 2023.08.30

Abstract

A total of 64 specimens of trace fossils were collected from the Jinju Formation of the construction site of Jinju Aviation Industrial Complex, and from the Haman Formation of Namhae Gain-ri fossil site. The fossils are continuously and regularly meandering sine-curve in shape. The fossil varies in morphology: width between 0.2 and 5.6 mm, wavelength between 1.5 and 28 mm, and amplitude between 0.9 and 7.9 mm; the Jinju specimens are commonly wider than the Haman ones. The ratio of wavelength to amplitude is more or less regular regardless of width of the specimen, and the linear correlation of the ratios shows that the Jinju specimens fit better than the Haman specimens. Taking all morphometric parameters, specimens in all size ranges are temporarily identified as ichnospecies Cochlichnus anguineus. In order to obtain more distinct and clearer images of Cochlichnus, we selected two specimens and applied a new imaging technology RTI. For photography of the trace fossils, 50 to 80 images were taken per set with photometric lighting close to the surface and horizontally. RTI technology clearly showed that the images of tiny fossils were improved: the surface contrast become sharper and messy and unnecessary information disappeared. Currently, RTI technology is used in many fields including preservation of cultural properties and archaeology. As a consequence, we hope to apply this technique to the field of paleontology, especially to the study of trace fossils of very small size.

Keywords

Acknowledgement

We would like to thank Theo Sohn, CEO of the Technology Research Institute for Culture & Heritage (TRIC) and Dr. Min Ji-hyun, who helped us with the outdoor and indoor RTI work for this study. We are also grateful to Prof. Seong-Joo Lee, Kyungpook National University for helping with English proofreading, and to the anonymous reviewers who improved the quality of the manuscript. A special thanks goes to officials of the Cultural Heritage Administration, Jinju City Hall, and Jinju Pterosaur Tracks Museum. This study was carried out as part of a research project on exhibition and utilization of maritime cultural heritage in the central part of the West Sea of the National Research Institute of Maritime Cultural Heritage.

References

  1. Bertling, M., Braddy, S.J. and Bromley, R.G. (2006) Names for trace fossils: a uniform approach. Lethaia, v.39, p.365-286. doi: 10.1080/00241160600787890
  2. Bertling, M., Buatois, L.A., Knaust, D., Laing, B., Mangano, M.G., Meyer, N., Mikulas, R., Minter, N.J., Neumann, C., Rindsberg, A.K., Uchman, A. and Wisshak, M. (2022) Names for trace fossils 2.0: theory and practice in ichnotaxonomy. Lethaia, v.55(3), p.1-19. doi: 10.18261/let.55.3.3
  3. Buatois L.A., Jalfin G. and Acenolaza F.G. (1997) Permian non marine invertebrate trace fossils from southern Patagonia, Argentina, ichnologic signatures of substrate consolidation and colonization sequences Journal of Paleontology, 71 (1997), p.324-336. doi: 10.1017/S0022336000039238
  4. Chang, K.H. (1975) Cretaceous stratigraphy of southeast Korea. Journal of the Geological Society of Korea, v.11, p.1-23.
  5. Chen, Z.-Q., Fraiser, M. and Bolton, C. (2012) Early Triassic trace fossils from Gondwana Interior Sea: Implication for ecosystem recovery following the end-Permian mass extinction in south high-latitude region. Gondwana Research, v.22, p.238-255. doi: 10.1016/j.gr.2011.08.015
  6. Choi, H.I. (1986) Fluvial plain/lacustrine facies transition in the Cretaceous Sindong Group, south coast of Korea. Sedimentary Geology, v.48, p.295-320. doi: 10.1016/0037-0738(86)90034-5
  7. Chough, S.K., Kwon, S.T., Lee, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Review. v.52, p.175-235. doi: 10.1016/S0012-8252(00)00029-5
  8. Cronin, C.J., Mendel, J.E., Mukhtar, S., Kim, Y.-M., Stirbl, R.C., Bruck, J. and Sternberg, P.W. (2005) An automated system for measuring parameters of nematode sinusoidal movement. BMC Genetics. 6(2005), p.5. doi:10.1186/1471-2156-6-5.
  9. Frank, E. (2015) Lights, Camera, Archaeology: Documenting Archaeological Textile Impressions with Reflectance Transformation Imaging (RTI). Textile Specialty Group Postprints, v.25, p.11-42.
  10. Gibert, J.M.de and Ekdale, A. (2002) Ichnology of a restricted epicontinental sea, Arapien Shale, Middle Jurassic, Utah, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, v.183, p.275-286. doi: 10.1016/S0031-0182(01)00491-6
  11. Harris, S. and Piquette, K. (2015) Reflectance Transformation Imaging (RTI) for visualising leather grain surface morphology as an aid to species identification: a pilot study. Archaeological Leather Group Newsletter, v.42, p.13-18.
  12. Hitchcock, E. (1858) Ichnology of New England. A Report on the Sandstone of the Connecticut Valley, Especially Its Fossil Foot Marks. W. White, Boston, 220p.
  13. Hughes-Hallett, M., Young, C. and Messier, P. (2021) A Review of RTI and an investigation into the applicability of micro-RTI as a tool for the documentation and conservation of modern and contemporary paintings. Journal of the American Institute for Conservation, v.60, p.18-31. doi: 10.1080/01971360.2019.1700724
  14. Jo, Y.H., Kwon, D.K., Ahn, J.H. and Ko, K.E. (2021), A Study on the Digital Decipherment of the Goguryeo Stele in Chungju. MUNHAJAE, v.54(2), p.240-253. doi: 10.22755/kjchs.2021.54.2.240
  15. Kim, J.H., Jo, Y.H., Ryu, J.H., Hwang, S.B. and Nyamsuren, D. (2023), Basic reexamination on of stone basin inscription in Buyeo, South Korea, using digital visualization technology. Wooden Documents and Inscriptions Studies, v.30, p. 163-184. doi: 10.35302/wdis.2023.06.30.163
  16. Kim, J.Y. and Lockley, M. (2016) First report of turtle tracks from the Lower Cretaceous of Korea. Cretaceous Research, v.64, p.1-6. doi: 10.1016/j.cretres.2016.03.014
  17. Kim, J.Y., Keighley, D.G., Pickerillc, R.K., Hwanga, W. and Kim. K.-S. (2005) Trace fossils from marginal lacustrine deposits of the Cretaceous Jinju Formation, southern coast of Korea. Palaeogeography, Palaeoclimatology, Palaeoecology, v.218, p.105-124. doi: 10.1016/j.palaeo.2004.12.008
  18. Kim, J.W., Kim, S.H., Kim, K.S. and Lockley, M.G. (2006) The oldest record of webbed bird and pterosaur tracks from South Korea (Cretaceous Haman Formation, Changseon and Sinsu Islands): more evidence of high avian diversity in East Asia. Cretaceous Research, v.27, p.56-69. doi: 10.1016/j.cretres.2005.10.005
  19. Kim, K.S., Lim, J.D., Lockley, M.G., Kim, D.H., Pinuela, L. and Yoo, J.S. (2019) Largest Cretaceous lizard track assemblage, new morphotypes and longest trackways comprise diverse components of an exceptional Korean Konservat-Lagerstatten ichnofauna. Scientific Reports, 9, p.1-12. doi: 10.1038/s41598-019-49442-0
  20. Koelle M.R. and Horvitz H.R. (1996) EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell, v.84, p.115-125. doi: 10.1016/s0092-8674(00)80998-8
  21. Kong, D.-Y., Lim, J.D., Kim, J.Y. and Kim, K.S. (2010) Application of Digital Photogrammetry to Dinosaur Tracks from the Namhae Gain-ri Tracksite. Journal of Korean Earth Science Society, v.31, p.129-138. doi: 10.5467/JKESS.2010.31.2.129
  22. Kong, D.-Y., Lim, J.D., Wohn, K.-Y., Ahn, J.-H. and Kim, K.S. (2011) Application of 3D Digital Documentation to Natural Monument Fossil Site. International Journal of Contents, v.11, p.492-502. doi: 10.5392/JKCA.2011.11.11.492
  23. Lockley, M.G., Kim, J.Y., Kim, K.S., Kim, S.H., Matsukawa, M., Ruhui, L., Jianjun, L. and Yang, S.-Y. (2008) Minisauripus-the track of a diminutive dinosaur from the Cretaceous of China and South Korea: implications for stratigraphic correlation and theropod foot morphodynamics. Cretaceous Research, v.29, p.115-130. doi: 10.1016/j.cretres.2007.04.003
  24. Malvar, S., Gontijo, R.G., Carmo, B.S. and Cunha, F.R. (2017) On the kinematics-wave motion of living particles in suspension. Biomicrofluidics, v.11(4), 044112. doi: 10.1063/1.4997715
  25. McEwan, J.A. (2018) Reflectance Transformation Imaging and the Future of Medieval Sigillography. History Compass, v.16(9), e12477. doi: 1111/hic3.12477 1111/hic3.12477
  26. Metz R. (1987) Sinusoidal trail formed by a recent biting midge (family Ceratopogonidae): trace fossil implications. Journal of Paleontology, v.61 (1987), p.312-314. doi: 10.1017/S0022336000028481
  27. Michealis P. (1972) Belorhaphe kochi (Ludwig 1969), eine Wurmspur im europaischen Karbon. Geologische Jahrbuch, v.71, p.299-330.
  28. Moussa M.T. (1970) Nematode fossil trails from the Green River Formation (Eocene) in the Uinta Basin, Utah. Journal of Paleontology, v.44, p.304-307.
  29. Nielsen, K.S.S., Nielsen, J.K. and Bromley, R.G. (2003) Palaeoecological and ichnological significance of microborings in Quaternary foraminifera. Palaeontologia Electronica, 6, p.1-13.
  30. Paik, I.S., Kim, H.J., Kim, S., Lee, J.E., So, Y.H. and Lee, H. (2019) Fossil-bearing deposits in the Jinju Formation at Jinju: Occurrences, paleo-environments and stratigraphic implications. Journal of the Geological Society of Korea. v.55, p.513-530. doi: 10.14770/jgsk.2019.55.5.513
  31. Paik, I.S. (2005) The oldest record of microbial-caddisfly bioherms from the Early Cretaceous Jinju Formation, Korea: occurrence and palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, v.218, p.301-315. doi: 10.1016/j.palaeo.2004.12.020
  32. Pickerill, R.K. (1981) Trace fossils in a Lower Palaeozoic submarine canyon sequence the Siegas Formation of northwestern New Brunswick, Canada. Maritime Sediments and Atlantic Geology, v.17, p.36-58. doi: 10.4138/1374
  33. Seo, S.J. (1997) Lower Cretaceous Dinosaur's-Pterosaur's Footprints from Haman Fm., Namhae, Kyongnam Korea. The Research of Science Education, v.23, p.1-11.
  34. Sohmura, T., Kojima, T., Wakabayashi, K. and Takahashi, J. (2000) Use of an ultra high-speed laser scanner for constructing three-dimensional shapes of dentition and occlusion. The Journal of Prosthetic Dentistry, v.84, p.345-352. doi: 10.1067/mpr.2000.109786
  35. Stanley, D.C.A. and Pickerill, R.K. (1998) Systematic ichnology of the Late Ordovician Georgian Bay Formation of southern Ontario. Royal Ontario Museum. Life Sciences Contributions. v.162, p.1-56. https://doi.org/10.5962/bhl.title.53483
  36. Tateiwa, I., (1929) Geological Atlas of Chosen, Waegwan, Daegu, Yeongcheon, Gyeongju and Joyang Sheets, Geological Survey of Chosen.
  37. Toula, F. (1908) Kriechspuren von Pisidium amnicum Muller. Beobachtungen auf einer Donauschlickbarre bei Kahlenbergerdorf-Wien. Verhandlungen der kaiserlichekoniglichen geologischen Bundesanstalt. 11, p.239-244.
  38. Uchman, A., Kazakauskas, V. and Gaigalas, A. (2009) Trace fossils from Late Pleistocene varved lacustrine sediments in eastern Lithuania. Palaeogeography, Palaeoclimatology, Palaeoecology, v.272, p.199-211. doi: 10.1016/j.palaeo.2008.08.003
  39. Uchman, A., Pika-Biolzi, M. and Hochuli, P.A. (2004) Oligocene trace fossils from temporary fluvial plain ponds: An examble from the Freshwater Molasse of Switzerland. Eclogae Geologicae Helvetiae, v.97(1), p.133-148. doi: 10.1007/s00015-004-1111-z
  40. Ulrich, X. (2012) Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans. Doctor of Science Thesis, Washington University in St. Louis, USA. doi: 10.7936/K7222RT5
  41. Won, S.H., (2015) Classification of the trace fossils from the Haman Formation of the Gyeongsang Basin, Korea. Kyungpook Nation University Ms Thesis, 52p.
  42. Yang, S.Y. (1975) On a new non-marine pelecypod genus from the Upper Mesozoic Gyeongsang Group of Korea. Transactions and Proceedings of the Palaeontological Society of Japan, v.100, p.177-187.
  43. Yang, S.Y., Yun, C.S. and Kim, T.W. (2003) Pictorial Book of Korean Fossils. Academy Book Company, Korea, 419p.