DOI QR코드

DOI QR Code

소양댐 상류 유역 내 어류상의 시⋅공간 분포와 부유성 퇴적물 영향

Spatio-temporal Distribution and Suspended Sediment Effects on Fish Flora in the Upper Basin of Soyang-Dam

  • 유은진 (한국환경연구원 물국토연구본부) ;
  • 안종호 (한국환경연구원 물국토연구본부) ;
  • 이문환 (한국환경연구원 물국토연구본부) ;
  • 전동진 (한국환경연구원 물국토연구본부)
  • Yu Eunjin (Water & Land Research Group, Korea Environment Institute) ;
  • Ahn Jongho (Water & Land Research Group, Korea Environment Institute) ;
  • Lee Moonhwan (Water & Land Research Group, Korea Environment Institute) ;
  • Jeon Dongjin (Water & Land Research Group, Korea Environment Institute)
  • 투고 : 2023.03.21
  • 심사 : 2023.05.09
  • 발행 : 2023.07.30

초록

Turbid water and suspended sediment (SS) load are having negative consequences such as water quality degradation and ecological damage, thus necessitating the establishment of management guidelines to reduce their impact. The present work investigates the spatio-temporal distribution of fish species and the effects of turbid water from 2011-2016 in the upper reaches of Soyang-Dam. The family Cyprinidae is the largest population in the study area, among which Zacco platypus and Zacco koreanus are the dominant species. The diversity of species is relatively abundant in the upper watershed, while the seasonal effect on the population distribution remains unclear. Using two main common components of the empirical orthogonal function (EOF) analysis, the distribution characteristics of 27 species at five survey sites are revealed. Zacco koreanus is found to be predominant at the upstream A-Naerincheon, while Zacco platypus and Rhinogobius brunneus are found to be predominant at the upstream B-Bukcheon. Disturbance of an aquatic ecosystem has a relatively greater impact in the downstream, as-compared to the upper area-the high proportion of forest area is decreased whereas that of agricultural and urbanized areas is increased. The patterns of representative species are changed according to the mid- to long-term effects of turbid water and SS. Accordingly, the significant correlation between the SS load and fish distribution EOF analysis indicates that it should be considered as a potential alternative that can overcome the limitations of impact assessment on turbid water to the Fish Assessment Index (FAI). A comprehensive study examining the long-term effects of SS load to the fish ecosystems with a systematic statistical analysis of sufficiently accumulated data at the national level is needed as future research.

키워드

과제정보

This work was supported by the Korea Environmental Industry and Technology Institute (KEITI) through Aquatic Ecosystem Conservation Research Program, funded by Korea Ministry of Environment (ME) (No.2021003030003).

참고문헌

  1. Arthington, A. H., Bunn, S. E., Poff, N. L., and Naiman, R. J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems, Ecological Applications, 16(4), 1311-1318. https://doi.org/10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2
  2. Benoy, G. A., Sutherland, A. B., Culp, J. M., and Brua, R. B. (2012). Physical and ecological thresholds for deposited sediments in streams in agricultural landscapes, Journal of Environmental Quality, 41(1), 31-40. https://doi.org/10.2134/jeq2010.0251
  3. Bilotta, G. S. and Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota, Water research, 42(12), 2849-2861. https://doi.org/10.1016/j.watres.2008.03.018
  4. Bilotta, G. S., Burnside, N. G., Cheek, L., Dunbar, M. J., Grove, M. K., and Harrison, C. (2012). Developing environment-specific water quality guidelines for suspended particulate matter, Water Research, 46, 2324-2332. https://doi.org/10.1016/j.watres.2012.01.055
  5. Burdon, F. J., McIntosh, A. R., and Harding, J. S. (2013). Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams, Ecological Applications, 23(5), 1036-1047. https://doi.org/10.1890/12-1190.1
  6. Byeon, M. S., Park, H. K., Lee, W. O., and Kong, D. S. (2008). Fish fauna and community structure in lake Paldang and its inflows, Journal of Korean Society on Water Environment, 24(2), 206-213.
  7. Clapcott, J., Young, R., Harding, J., Matthaei, C., Quinn, J., and Death, R. (2011). Sediment assessment methods: Protocols and guidelines for assessing the effects of deposited fine sediment on in-stream values, Cawthron Institute, New Zealand.
  8. Collins, A., Naden, P., Sear, D., Jones, J., Foster, I. D., and Morrow, K. (2011). Sediment targets for informing river catchment management: International experience and prospects, Hydrological Process, 25, 2112-2129. https://doi.org/10.1002/hyp.7965
  9. Davies-Colley, R. J. and Smith, D. G. (2001). Turbidity, suspended sediment, and water clarity: A review, Journal of the American Water Resources Association, 37(5), 1085-1101. https://doi.org/10.1111/j.1752-1688.2001.tb03624.x
  10. European Parliament and Council. (2000). Water Framework Directive establishing a framework for community action in the field of water policy, 2000/60/EC, 1-72.
  11. Goncalves, F. B. and Menezes, M. S. (2011). A comparative analysis of biotic indices that use macroinvertebrates to assess water quality in a coastal river of Parana state, southern Brazil, Biota Neotropica, 11(4), 27-36. https://doi.org/10.1590/S1676-06032011000400002
  12. Han, S. C., Lee, H. Y., Seo, E. W., Shim, J. H., and Lee, J. E. (2007). The influence of muddy water in Imha reservoir on the ichthyofauna and fish growth, Journal of Life Science, 17(8), 1104-1110. https://doi.org/10.5352/JLS.2007.17.8.1104
  13. Hong, M. Y., Lee, T. G., and Lee, S. M. (2019). Preliminary feasibility study report 2018: Aquatic ecosystem conservation research program, Korea Institute of Science and Technology Evaluation and Planning (KISTEP), 1-267.
  14. Intergovernmental Panel on Climate Change (IPCC). (2022). Climate change 2022: Impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment Report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 1-3056.
  15. Jessup, B. K., Kaufmann, P. R., Forrest, J., Guevara, L. S., Joseph, S. (2014). Bedded sediment conditions and macroinvertebrate responses in New Mexico streams: A first step in establishing sediment criteria, Journal of the American Water Resources Association, 50(6), 1558-1574. https://doi.org/10.1111/jawr.12224
  16. Jo, M. H., Sim, J. S., Lee, J. A., and Jang, S. H. (2015). Health Assessment of the Nakdong river basin aquatic ecosystems utilizing GIS and spatial statistics, Journal of the Korean Assosication of Geographic Information Studies, 18(2), 174-189. https://doi.org/10.11108/kagis.2015.18.2.174
  17. Jones, J. I., Murphy, J. F., Collins, A. L., Sear, D. A., Naden, P. S., and Armitage, P. D. (2012). The impact of fine sediment on macro-Invertebrates, River Research and Applications, 28(8), 1055-1071. https://doi.org/10.1002/rra.1516
  18. Jowett, I. G. and Boustead, N. C. (2001). Effects of substrate and sedimentation on the abundance of upland bullies (Gobiomorphus breviceps), New Zealand Journal of Marine and Freshwater Research, 35(3), 605-613. https://doi.org/10.1080/00288330.2001.9517026
  19. Karr, J. R. (1999). Defining and measuring river health, Freshwater Biology, 41(2), 221-234. https://doi.org/10.1046/j.1365-2427.1999.00427.x
  20. Kayhanian, M., Stransky, C., Bay, S., Lau, S. L., and Stenstrom, M. K. (2008). Toxicity of urban highway runoff with respect to s torm duration, Science of the Total Environment, 389(2-3), 386-406. https://doi.org/10.1016/j.scitotenv.2007.08.052
  21. Kemp, P., Sear, D., Collins, A., Naden, P., and Jones, I. (2011). The impacts of fine sediment on riverine fish, Hydrological Processes, 25(11), 1800-1821. https://doi.org/10.1002/hyp.7940
  22. Kenny, M. A., Sutton-Grier, A. E., Smith, R. F., and Gresens, S. E. (2009). Benthic macroinvertebrates as indicators of water quality: The intersection of science and policy, Terrestrial Arthropod Reviews, 2(2), 99-128. https://doi.org/10.1163/187498209X12525675906077
  23. Kim, B. C. and Jung, S. M. (2007). Turbid storm runoffs in lake Soyang and their environmental effect, Journal of Korean Society of Environmental Engineers, 29(11), 1185-1190.
  24. Kim, J. G., Choi, J. S., Jang, Y. S., Lee, K. Y., and Kim, B. C. (2007). Effects of turbid water on fish community: Case studies of the Daegi stream and the Bong-san stream, Korean Journal of Limnology, 40(3), 459-467.
  25. Kim, J. J., Kwon, S. C., Uh, N. G., and An, K. G. (2018). Long-term ecological assessment on urban stream focusing on restoration project, Korean Society of Environment & Ecology, 28(2), 56-56.
  26. Kim, I. J., Ahn, J. H., and Han, D. H. (2009). Water environment management strategy (I): Response to climate change, 2009-13, Korea Environment Institute, 1-96.
  27. Kjelland, M. E., Woodley, C. M., Swannack, T. M., and Smith, D. L. (2015). A review of the potential effects of suspended sediment on fishes: Potential dredging-related physiological, behavioral, and transgenerational implications, Environment Systems and Decisions, 35, 334-350. https://doi.org/10.1007/s10669-015-9557-2
  28. Kong, D. S. (2002). A study on ecological water quality standards, Korean Journal of Environment Biology, 20, 38-49.
  29. Korea Meteorological Administration (KMA). (2022). Open MET Data Portal, https://data.kma.go.kr (accessed Nov. 2022).
  30. Merz, S. K. (2013). Characterising the relationship between water quality and water quantity, Department of Agriculture and Water Resources, Canberra, 1-116.
  31. Metcalfe, J. L. (1989). Biological water quality assessment of running waters based on macroinvertebrate communities: History and present status in Europe, Environmental pollution, 60(1-2), 101-139. https://doi.org/10.1016/0269-7491(89)90223-6
  32. Ministry of Environment (ME). (2022). Water Environment Information System (WEIS), https://water.nier.go.kr (accessed Nov. 2022).
  33. Ministry of Environment and National Institute of Environmental Research (ME and NIER). (2022a). National river aquatic ecological health map, NIER-GP2022-093, 1-38.
  34. Ministry of Environment and National Institute of Environmental Research (ME and NIER). (2022b). National aquatic ecosystem survey and health evaluation, NIER-GP2022-124, 1-20.
  35. Na, J. K. (2021). Development of regression models for estimating aquatic ecosystem health indices using water quality data, Ph. D. Dissertation, Seoul National University, 1-142.
  36. National Institute of Environment Research (NIER). (2019). A guideline on the current status and health assessment of aquatic ecosystems, 2019-52, 1-127.
  37. Newcombe, C. P. (2003). Impact assessment model for clear water fishes exposed to excessively cloudy water, Journal of the American Water Resources Association, 39(3), 529-544. https://doi.org/10.1111/j.1752-1688.2003.tb03674.x
  38. Newcombe, C. P. and Macdonald, D. D. (1991). effects of suspended sediments on aquatic ecosystems, North American Journal of Fisheries Management, 11(1), 72-82. https://doi.org/10.1577/1548-8675(1991)011<0072:EOSSOA>2.3.CO;2
  39. Park, Y. J., Lee, S. J., and An, K. G. (2019). Analysis of fish ecology and water quality for health assessment of Geum-river watershed, Korean Journal of Environment and Ecology, 33(2), 187-201. https://doi.org/10.13047/KJEE.2019.33.2.187
  40. Power, M. E., Stout, R. J., Cushing, C. E., Harper, P. P., Hauer, F. R., Matthews, W. J., Moyle, P. B., Statzner, B., Irene, R. W. D. B., and De Badgen, W. (1988). Biotic and abiotic controls in river and stream communities, Journal of the North American Benthological Society, 7(4), 456-479. https://doi.org/10.2307/1467301
  41. Rosenberg, D. M. and Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates, Springer New York, 1-488.
  42. Shin, M. J., Lee, J. E., and Seo, E. W. (2009). Effect of muddy water on the fishes in Imha reservoir, Journal of Life Science, 19(8), 1112-1118. https://doi.org/10.5352/JLS.2009.19.8.1112
  43. Suttle, K. B., Power, M. E., Levine, J. M., and McNeely, C. (2004). How fine sediment in riverbeds impairs growth and survival of juvenile salmonids, Ecological applications, 14(4), 969-974. https://doi.org/10.1890/03-5190
  44. Toft, J. D., Munsch, S. H., Cordell, J. R., Siitari, K., Hare, V. C., Holycross, B. M., DeBruyckere, L. A., Greene, C. M., and Hughes, B. B. (2018). Impact of multiple stressors on juvenile fish in estuaries of the northeast Pacific, Global Change Biology, 24(5), 2008-2020. https://doi.org/10.1111/gcb.14055
  45. United States Environmental Protection Agency (U. S. EPA). (2022). National aquatic resource surveys, https://www.epa.gov/national-aquatic-resource-surveys/indicators-fish-assemblage (accessed Jan. 2022).
  46. Wagenhoff, A., Townsend, T. R., Ngaire, P., and Matthaei, C. D. (2011). Subsidy-stress and multiple-stressor effects along gradients of deposited fine sediment and dissolved nutrients in a regional set of streams and rivers, Freshwater Biology, 56(9), 1916-1936. https://doi.org/10.1111/j.1365-2427.2011.02619.x
  47. Wood, P. J. and Armitage, P. D. (1997). Biological effects of fine s ediment in the lotic environment, Environmental management, 21(2), 203-217. https://doi.org/10.1007/s002679900019
  48. Woo, S. Y., Kim, S. J., Hwang, S. J., and Jung, C. G. (2019). Assessment of changes on water quality and aquatic ecosystem health in Han river basin by additional dam release of stream maintenance flow, Journal of Korea Water Resources Association, 52(S-2), 777-789.
  49. Woo, S. Y., Jung, C. G., Kim, J. U., and Kim, S. J. (2018). Assessment of climate change impact on aquatic ecology health indices in Han river basin using SWAT and random forest, Journal of Korea Water Resources Association, 51(10), 863-874. https://doi.org/10.3741/JKWRA.2018.51.10.863
  50. Yoon, J. D., Kim, J. H., Park, S. H., and Jang, M. H. (2018). The distribution and diversity of freshwater fishes in Korean peninsula, Korean Journal of Ecology and Environment, 51(1), 71-85. https://doi.org/10.11614/KSL.2018.51.1.071