DOI QR코드

DOI QR Code

Visualization of Turbulent Flow Fields Around a Circular Cylinder at Reynolds Number 1.4×105 Using PIV

  • Jun-Hee Lee (Student, Department of Naval Architecture & Ocean Engineering, Inha University) ;
  • Bu-Geun Paik (Korea Research Institute of Ships & Ocean Engineering) ;
  • Seok-Kyu Cho (Korea Research Institute of Ships & Ocean Engineering) ;
  • Jae-Hwan Jung (Korea Research Institute of Ships & Ocean Engineering)
  • 투고 : 2023.04.17
  • 심사 : 2023.07.19
  • 발행 : 2023.08.31

초록

This study investigates the experimental parameters of particle image velocimetry (PIV) to enhance the measurement technique for turbulent flow fields around a circular cylinder at a Reynolds number (Re) of 1.4×105. At the Korea Research Institute of Ships & Ocean Engineering (KRISO), we utilized the cavitation tunnel and PIV system to capture the instantaneous flow fields and statistically obtained the mean flow fields. An aspect ratio and blockage ratio of 16.7% and 6.0%, respectively, were considered to minimize the tunnel wall effect on the cylinder wakes. The optimal values of the pulse time and the number of flow fields were determined by comparing the contours of mean streamlines, velocities, Reynolds shear stresses, and turbulent kinetic energy under their different values to ensure accurate and converged results. Based on the findings, we recommend a pulse time of 45 ㎲ corresponding to a particle moving time of 3-4 pixels, and at least 3,000 instantaneous flow fields to accurately obtain the mean flow fields. The results of the present study agree well with those of previous studies that examined the end of the subcritical flow regime.

키워드

과제정보

This work was supported by the Korea Research Institute of Ships & Ocean Engineering Project ("Development of CFD Technology for Global Performance Analysis of Offshore Structure") funded by the Ministry of Oceans and Fisheries (PES4780).

참고문헌

  1. Achenbach, E., & Heinecke, E. (1981). On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6×103 to 5×106. Journal of Fluid Mechanics, 109, 239-251. https://doi.org/10.1017/S002211208100102X
  2. Blackburn, H. M., & Melbourne, W. H. (1996). The effect of free-stream turbulence on sectional lift forces on a circular cylinder. Journal of Fluid Mechanics, 306, 267-292. https://doi.org/10.1017/S0022112096001309
  3. Blevins, R. D. (1977). Flow-Induced Vibration. Van Nostrand Reinhold Company.
  4. Braza, M., Perrin, R., & Hoarau, Y. (2006). Turbulence properties in the cylinder wake at high Reynolds numbers. Journal of Fluids and Structures, 22(6-7), 757-771. https://doi.org/10.1016/j.jfluidstructs.2006.04.021
  5. Chen, W., Wang, S., Shi, X., Rheem, C. K., Lin, Y., & Liu, E. (2022). Numerical simulation of surface roughness effects on the vortex-induced vibration of a circular cylinder at a subcritical Reynolds number. International Journal of Naval Architecture and Ocean Engineering, 14, 100430. https://doi.org/10.1016/j.ijnaoe.2021.100430
  6. Cheung, C. K., & Melbourne, W.H. (1980). Wind tunnel blockage effect on a circular cylinder in turbulent flows. In Proceedings of the 7th Australasian Hydraulics and Fluid Mechanics Conference, Brisbane, Australia, 127-130. https://search.informit.org/doi/10.3316/informit.558932646045391
  7. James, W. D., Paris, S. W., & Malcolm, G. N. (1980). Study of viscous crossflow effects on circular cylinders at high reynolds numbers. AIAA paper, 18(9), 1066. https://doi.org/10.2514/3.50855
  8. Lee, S. J. (1999). PIV velocity field measurement. POSTECH, 11-231.
  9. Lee, J. H., Paik, B. G., Kim, K. Y., Jung, J. H., Cho, S.K., & Sung, H. G. (2018). A study on visualization wake of circular cylinder wake using PIV method. Proceedings of 2018 Fall Conference of The Korean Society of Visualization, Pusan, Korea, 69-70.
  10. Paik, B. G., Kim, K. Y., Cho, S. R., & Ahn, J. W. (2007). Study on quantitative visualization using bubble tracer in a cavitation tunnel. Journal of the Korean Society of Visualization, 5(1), 19-26. https://doi.org/10.5407/JKSV.2007.5.1.022
  11. Paik, B. G., Kim, K. Y., Kim, K. S., Lee, J. Y., & Lee, S.J. (2010). Analysis of the unstable propeller wake using POD method. Journal of the Society of Naval Architects of Korea, 47(1), 20-29. https://doi.org/10.3744/SNAK.2010.47.1.020
  12. Park, G. S., & Kwak, Y. K. (2004). Flow survey around twodimensional circular cylinder using PIV technique. Journal of Ocean Engineering and Technology, 18(3), 1-7.
  13. Roshko, A. (1961). Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics, 10(3), 345-356. https://doi.org/10.1017/S0022112061000950
  14. Schewe, G. (1983). On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds number. Journal of Fluid Mechanics, 133, 265-285. https://doi.org/10.1017/S0022112083001913
  15. van Hinsberg, N. P. (2015). The Reynolds number dependency of the steady and unsteady loading on a slightly rough circular cylinder: From subcritical up to high transcritical flow state. Journal of Fluids and Structures, 55, 526-539. https://doi.org/10.1016/j.jfluidstructs.2015.04.002
  16. van Hinsberg, N. P., Schewe, G., & Jacobs, M. (2018). Experimental investigation on the combined effects of surface roughness and corner radius for square cylinders at high Reynolds numbers up to 107. Journal of Wind Engineering and Industrial Aerodynamics, 173, 14-27. https://doi.org/10.1016/j.jweia.2017.12.003
  17. Williamson, C. H. K. (1996). Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, 28, 477-539. https://doi.org/10.1146/annurev.fl.28.010196.002401
  18. Zdravkovich, M. M. (1997). Flow around circular cylinders. Volume I: Fundamentals. Oxford Science Publications.