Acknowledgement
본 연구는 환경부와 한국환경산업기술원의 "폐플라스틱 활용 원료·연료화 기술개발 사업(No. 2022003490001)"으로 추진된 것으로 환경부와 한국환경산업기술원의 재정 지원에 감사드립니다.
References
- Y. Sun, S. Liu, P. Wang, X. Jian, X. Liao, and W. Q. Chen, "China's roadmap to plastic waste management and associated economic costs", Journal of Environmental Management, Vol. 309, 2022, pp.114686, doi: https://doi.org/10.1016/j.jenvman.2022.114686.
- J. S. Choi, "Development of high purity styrene monomer production technology through continuous pyrolysis process using low energy of waste polystyrene", In: 2022 Autumn Conference of Korea Society of Environmental & Energy Engineers; 2022 Dec 8-9; Jeju, Korea.
- H. H. Shah, M. Amin, A. Iqbal, I. Nadeem, M. Kalin, A. M. Soomar, and A. M. Galal, "A review on gasification and pyrolysis of waste plastics", Frontiers in Chemistry, Vol. 10, 2022, pp. 960894, doi: https://doi.org/10.3389/fchem.2022.960894.
- D. Saebea, P. Ruengrit, A. Arpornwichanop, and Y. Patcharavorachot, "Gasification of plastic waste for synthesis gas production", Energy Reports, Vol. 6, Suppl 1, 2020, pp. 202-207, doi: https://doi.org/10.1016/j.egyr.2019.08.043.
- C. J. Moore, "Synthetic polymers in the marine environment: a rapidly increasing, long-term threat", Environmental Research, Vol. 108, No. 2, 2008, pp. 131-139, doi: https://doi.org/10.1016/j.envres.2008.07.025.
- F. D. B. de Sousa, "Management of plastic waste: a bibliometric mapping and analysis", Waste Management & Research, Vol. 39, No. 5, 2021, pp. 664-678, doi: https://doi.org/10.1177/0734242X21992422.
- C. Wu and P. T. Williams, "Hydrogen production by steam gasification of polypropylene with various nickel catalysts ", Applied Catalysis B: Environmental, Vol. 87, No. 3-4, 2009, pp. 152-161, doi: https://doi.org/10.1016/j.apcatb.2008.09.003.
- M. He, B. Xiao, Z. Hu, S. Liu, X. Guo, and S. Luo, "Syngas production from catalytic gasification of waste polyethylene: influence of temperature on gas yield and composition", International Journal of Hydrogen Energy, Vol. 34, No. 3, 2009, pp. 1342-1348, doi: https://doi.org/10.1016/j.ijhydene.2008.12.023.
- V. Wilk and H. Hofbauer, "Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier", Fuel, Vol. 107, 2013, pp. 787-799, doi: https://doi.org/10.1016/j.fuel.2013.01.068.
- C. Berrueco, F. J. Mastral, E. Esperanza, and J. Ceamanos, "Production of waxes and tars from the continuous pyrolysis of high density polyethylene. Influence of operation variables", Energy & Fuels, Vol. 16, No. 5, 2002, pp. 1148-1153, doi: https://doi.org/10.1021/ef020008p.
- M. Arabiourrutia, G. Elordi, G. Lopez, E. Borsella, J. Bilbao, and M. Olazar, "Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor", Journal of Analytical and Applied Pyrolysis, Vol. 94, 2012, pp. 230-237, doi: https://doi.org/10.1016/j.jaap.2011.12.012.
- M. del Remedio Hernandez, A. Gomez, A. N. Garcia, J. Agullo, and A. Marcilla, "Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE", Applied Catalysis A: General, Vol. 317, No. 2, 2007, pp. 183-194, doi: https://doi.org/10.1016/j.apcata.2006.10.017.
- G. Elordi, M. Olazar, G. Lopez, M. Artetxe, and J. Bilbao, "Continuous polyolefin cracking on an HZSM-5 zeolite catalyst in a conical spouted bed reactor", Industrial & Engineering Chemistry Research, Vol. 50, No. 10, 2011, pp. 6061-6070, doi: https://doi.org/10.1021/ie2002999.
- Y. Mo, L. Zhao, Z. Wang, C. L. Chen, G. Y. A. Tan, and J. Y. Wang, "Enhanced styrene recovery from waste polystyrene pyrolysis using response surface methodology coupled with Box-Behnken design", Waste Management, Vol. 34, No. 4, 2014, pp. 763-769, doi: https://doi.org/10.1016/j.wasman.2014.01.005.
- G. Lopez, M. Artetxe, M. Amutio, J. Bilbao, and M. Olazar, "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review", Renewable and Sustainable Energy Reviews, Vol. 73, 2017, pp. 346-368, doi: https://doi.org/10.1016/j.rser.2017.01.142.
- G. Lopez, M. Artetxe, M. Amutio, J. Alvarez, J. Bilbao, and M. Olazar, "Recent advances in the gasification of waste plastics. A critical overview", Renewable and Sustainable Energy Reviews, Vol. 82, Pt. 1, 2018, pp. 576-596, doi: https://doi.org/10.1016/j.rser.2017.09.032.
- E. Baraj, K. Ciahotny, and T. Hlincik, "The water gas shift reaction: catalysts and reaction mechanism", Fuel, Vol. 288, 2021, pp. 119817, doi: https://doi.org/10.1016/j.fuel.2020.119817.
- H. S. Na, D. W. Jeong, W. J. Jang, Y. L. Lee, and H. S. Roh, "A study on Cu based catalysts for water gas shift reaction to produce hydrogen from waste-derived synthesis gas", Jornal of Hydrogen and New Energy, Vol. 25, No. 3, 2014, pp. 227-233, doi: https://doi.org/10.7316/KHNES.2014.25.3.227.
- R. J. B. Smith, M. Loganathan, and M. S. Shantha, "A review of the water gas shift reaction kinetics", International Journal of Chemical Reactor Engineering, Vol. 8, No. 1, 2010, pp. 1-32, doi: https://doi.org/10.2202/1542-6580.2238.
- W. H. Chen, T. C. Hsieh, and T. L. Jiang, "An experimental study on carbon monoxide conversion and hydrogen generation from water gas shift reaction", Energy Conversion and Management, Vol. 49, No. 10, 2008, pp. 2801-2808, doi: https://doi.org/10.1016/j.enconman.2008.03.020.