DOI QR코드

DOI QR Code

Water Gas Shift Reaction Using the Commercial Catalyst Pellets from the Gases by Waste Plastic Gasification

폐플라스틱 가스화에 의한 가스로부터 상용 촉매 펠릿을 이용한 수성가스 전환 반응

  • JI-MIN YUN (Technical Korea) ;
  • YOUNG-SUB CHOI (Technical Korea) ;
  • JIN-BAE KIM (Department of Green Energy Engineering, Hoseo University General Graduate School) ;
  • JIN-BAE KIM (Department of Green Energy Engineering, Hoseo University General Graduate School) ;
  • GAB-JIN HWANG (Department of Green Energy Engineering, Hoseo University General Graduate School)
  • 윤지민 ((주)테크니컬코리아) ;
  • 최영섭 ((주)테크니컬코리아) ;
  • 김진배 (호서대학교 일반대학원 그린에너지공학과) ;
  • 김진배 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2023.07.28
  • Accepted : 2023.08.25
  • Published : 2023.08.30

Abstract

The water gas shift reaction was carried out using the commercial catalyst pellet and the simulated gases expected to occur from waste plastic gasification. In the water gas shift reaction, the high temperature shift reaction and the low temperature shift reaction were continuously performed with CO:H2O ratio of 1:2, 1:2.5, and 1:3, and the CO conversion and H2 increase rate were evaluated. The H2 increase rate increased in order to CO:H2O ratio of 1:3 > CO:H2O ratio of 1:2.5 > CO:H2O ratio of 1:2. The CO conversion showed a high value of more than 97% at each CO:H2O ratio. The water gas shift reaction at a CO:H2O ratio of 1:3 showed the highest H2 increase rate and CO conversion.

Keywords

Acknowledgement

본 연구는 환경부와 한국환경산업기술원의 "폐플라스틱 활용 원료·연료화 기술개발 사업(No. 2022003490001)"으로 추진된 것으로 환경부와 한국환경산업기술원의 재정 지원에 감사드립니다.

References

  1. Y. Sun, S. Liu, P. Wang, X. Jian, X. Liao, and W. Q. Chen, "China's roadmap to plastic waste management and associated economic costs", Journal of Environmental Management, Vol. 309, 2022, pp.114686, doi: https://doi.org/10.1016/j.jenvman.2022.114686.
  2. J. S. Choi, "Development of high purity styrene monomer production technology through continuous pyrolysis process using low energy of waste polystyrene", In: 2022 Autumn Conference of Korea Society of Environmental & Energy Engineers; 2022 Dec 8-9; Jeju, Korea.
  3. H. H. Shah, M. Amin, A. Iqbal, I. Nadeem, M. Kalin, A. M. Soomar, and A. M. Galal, "A review on gasification and pyrolysis of waste plastics", Frontiers in Chemistry, Vol. 10, 2022, pp. 960894, doi: https://doi.org/10.3389/fchem.2022.960894.
  4. D. Saebea, P. Ruengrit, A. Arpornwichanop, and Y. Patcharavorachot, "Gasification of plastic waste for synthesis gas production", Energy Reports, Vol. 6, Suppl 1, 2020, pp. 202-207, doi: https://doi.org/10.1016/j.egyr.2019.08.043.
  5. C. J. Moore, "Synthetic polymers in the marine environment: a rapidly increasing, long-term threat", Environmental Research, Vol. 108, No. 2, 2008, pp. 131-139, doi: https://doi.org/10.1016/j.envres.2008.07.025.
  6. F. D. B. de Sousa, "Management of plastic waste: a bibliometric mapping and analysis", Waste Management & Research, Vol. 39, No. 5, 2021, pp. 664-678, doi: https://doi.org/10.1177/0734242X21992422.
  7. C. Wu and P. T. Williams, "Hydrogen production by steam gasification of polypropylene with various nickel catalysts ", Applied Catalysis B: Environmental, Vol. 87, No. 3-4, 2009, pp. 152-161, doi: https://doi.org/10.1016/j.apcatb.2008.09.003.
  8. M. He, B. Xiao, Z. Hu, S. Liu, X. Guo, and S. Luo, "Syngas production from catalytic gasification of waste polyethylene: influence of temperature on gas yield and composition", International Journal of Hydrogen Energy, Vol. 34, No. 3, 2009, pp. 1342-1348, doi: https://doi.org/10.1016/j.ijhydene.2008.12.023.
  9. V. Wilk and H. Hofbauer, "Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier", Fuel, Vol. 107, 2013, pp. 787-799, doi: https://doi.org/10.1016/j.fuel.2013.01.068.
  10. C. Berrueco, F. J. Mastral, E. Esperanza, and J. Ceamanos, "Production of waxes and tars from the continuous pyrolysis of high density polyethylene. Influence of operation variables", Energy & Fuels, Vol. 16, No. 5, 2002, pp. 1148-1153, doi: https://doi.org/10.1021/ef020008p.
  11. M. Arabiourrutia, G. Elordi, G. Lopez, E. Borsella, J. Bilbao, and M. Olazar, "Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor", Journal of Analytical and Applied Pyrolysis, Vol. 94, 2012, pp. 230-237, doi: https://doi.org/10.1016/j.jaap.2011.12.012.
  12. M. del Remedio Hernandez, A. Gomez, A. N. Garcia, J. Agullo, and A. Marcilla, "Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE", Applied Catalysis A: General, Vol. 317, No. 2, 2007, pp. 183-194, doi: https://doi.org/10.1016/j.apcata.2006.10.017.
  13. G. Elordi, M. Olazar, G. Lopez, M. Artetxe, and J. Bilbao, "Continuous polyolefin cracking on an HZSM-5 zeolite catalyst in a conical spouted bed reactor", Industrial & Engineering Chemistry Research, Vol. 50, No. 10, 2011, pp. 6061-6070, doi: https://doi.org/10.1021/ie2002999.
  14. Y. Mo, L. Zhao, Z. Wang, C. L. Chen, G. Y. A. Tan, and J. Y. Wang, "Enhanced styrene recovery from waste polystyrene pyrolysis using response surface methodology coupled with Box-Behnken design", Waste Management, Vol. 34, No. 4, 2014, pp. 763-769, doi: https://doi.org/10.1016/j.wasman.2014.01.005.
  15. G. Lopez, M. Artetxe, M. Amutio, J. Bilbao, and M. Olazar, "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review", Renewable and Sustainable Energy Reviews, Vol. 73, 2017, pp. 346-368, doi: https://doi.org/10.1016/j.rser.2017.01.142.
  16. G. Lopez, M. Artetxe, M. Amutio, J. Alvarez, J. Bilbao, and M. Olazar, "Recent advances in the gasification of waste plastics. A critical overview", Renewable and Sustainable Energy Reviews, Vol. 82, Pt. 1, 2018, pp. 576-596, doi: https://doi.org/10.1016/j.rser.2017.09.032.
  17. E. Baraj, K. Ciahotny, and T. Hlincik, "The water gas shift reaction: catalysts and reaction mechanism", Fuel, Vol. 288, 2021, pp. 119817, doi: https://doi.org/10.1016/j.fuel.2020.119817.
  18. H. S. Na, D. W. Jeong, W. J. Jang, Y. L. Lee, and H. S. Roh, "A study on Cu based catalysts for water gas shift reaction to produce hydrogen from waste-derived synthesis gas", Jornal of Hydrogen and New Energy, Vol. 25, No. 3, 2014, pp. 227-233, doi: https://doi.org/10.7316/KHNES.2014.25.3.227.
  19. R. J. B. Smith, M. Loganathan, and M. S. Shantha, "A review of the water gas shift reaction kinetics", International Journal of Chemical Reactor Engineering, Vol. 8, No. 1, 2010, pp. 1-32, doi: https://doi.org/10.2202/1542-6580.2238.
  20. W. H. Chen, T. C. Hsieh, and T. L. Jiang, "An experimental study on carbon monoxide conversion and hydrogen generation from water gas shift reaction", Energy Conversion and Management, Vol. 49, No. 10, 2008, pp. 2801-2808, doi: https://doi.org/10.1016/j.enconman.2008.03.020.