DOI QR코드

DOI QR Code

Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity

  • Seong-Min Hong (College of Pharmacy, Gachon University) ;
  • Eun Yoo Lee (College of Pharmacy, Gachon University) ;
  • Jinho Park (Department of Exercise Rehabilitation, Gachon University) ;
  • Jiyoun Kim (Department of Exercise Rehabilitation, Gachon University) ;
  • Sun Yeou Kim (College of Pharmacy, Gachon University)
  • 투고 : 2023.07.17
  • 심사 : 2023.07.30
  • 발행 : 2023.09.01

초록

Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.

키워드

과제정보

This research was supported by a grant from the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A4068917). We are also thankful to Myoung Gyu Park, MetaCen Therapeutics Co., Ltd for his valuable support.

참고문헌

  1. Arroyave, F., Montano, D. and Lizcano, F. (2020) Diabetes mellitus is a chronic disease that can benefit from therapy with induced pluripotent stem cells. Int. J. Mol. Sci. 21, 8685.
  2. Baig, M. H., Jan, A. T., Rabbani, G., Ahmad, K., Ashraf, J. M., Kim, T., Min, H. S., Lee, Y. H., Cho, W. K., Ma, J. Y., Lee, E. J. and Choi, I. (2017) Methylglyoxal and advanced glycation end products: Insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Sci. Rep. 7, 5916.
  3. Bassi-Dibai, D., Santos-de-Araujo, A. D., Dibai-Filho, A. V., de Azevedo, L. F. S., Goulart, C. D. L., Luz, G. C. P., Burke, P. R., Garcia-Araujo, A. S. and Borghi-Silva, A. (2022) Rehabilitation of individuals with diabetes mellitus: focus on diabetic myopathy. Front. Endocrinol. (Lausanne) 13, 869921.
  4. Bodine, S. C. and Baehr, L. M. (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307, E469-E484. https://doi.org/10.1152/ajpendo.00204.2014
  5. Bodine, S. C., Sinha, I. and Sweeney, H. L. (2023) Mechanisms of skeletal muscle atrophy and molecular circuitry of stem cell fate in skeletal muscle regeneration and aging. J. Gerontol. A Biol. Sci. Med. Sci. 78, 14-18. https://doi.org/10.1093/gerona/glad023
  6. Bonaldo, P. and Sandri, M. (2013) Cellular and molecular mechanisms of muscle atrophy. Dis. Model Mech. 6, 25-39. https://doi.org/10.1242/dmm.010389
  7. Brock Symons, T., Park, J., Kim, J. H., Kwon, E. H., Delacruz, J., Lee, J., Park, Y., Chung, E. and Lee, S. (2023) Attenuation of skeletal muscle atrophy via acupuncture, electro-acupuncture, and electrical stimulation. Integr. Med. Res. 12, 100949.
  8. Cea, L. A., Vasquez, W., Hernandez-Salinas, R., Vielma, A. Z., Castillo-Ruiz, M., Velarde, V., Salgado, M. and Saez, J. C. (2023) Skeletal muscle atrophy induced by diabetes is mediated by non-selective channels and prevented by boldine. Biomolecules 13, 708.
  9. Dablainville, V. and Sanchez, A. M. J. (2019) The role of the recently discovered E3 ubiquitin ligase UBR5 in skeletal muscle mass regulation. J. Physiol. 597, 4133-4135. https://doi.org/10.1113/JP278533
  10. Dieter, B. P. and Vella, C. A. (2013) A proposed mechanism for exercise attenuated methylglyoxal accumulation: activation of the ARE-Nrf pathway and increased glutathione biosynthesis. Med. Hypotheses 81, 813-815. https://doi.org/10.1016/j.mehy.2013.08.034
  11. Doukkali, Z., Taghzouti, K., Bouidida, E. L., Nadjmouddine, M., Cherrah, Y. and Alaoui, K. (2015) Evaluation of anxiolytic activity of methanolic extract of Urtica urens in a mice model. Behav. Brain Funct. 11, 19.
  12. Egawa, T., Ogawa, T., Yokokawa, T., Kido, K., Goto, K. and Hayashi, T. (2022) Methylglyoxal reduces molecular responsiveness to 4 weeks of endurance exercise in mouse plantaris muscle. J. Appl. Physiol. 132, 477-488. https://doi.org/10.1152/japplphysiol.00539.2021
  13. Fang, C. H., James, H. J., Ogle, C., Fischer, J. E. and Hasselgren, P. O. (1995) Influence of burn injury on protein metabolism in different types of skeletal muscle and the role of glucocorticoids. J. Am. Coll. Surg. 180, 33-42.
  14. Girgenrath, S., Song, K. and Whittemore, L. A. (2005) Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow- and fast-type skeletal muscle. Muscle Nerve 31, 34-40. https://doi.org/10.1002/mus.20175
  15. Handschin, C., Chin, S., Li, P., Liu, F., Maratos-Flier, E., Lebrasseur, N. K., Yan, Z. and Spiegelman, B. M. (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J. Biol. Chem. 282, 30014-30021. https://doi.org/10.1074/jbc.M704817200
  16. Hyatt, J. P. K., Brown, E. A., Deacon, H. M. and McCall, G. E. (2019) Muscle-specific sensitivity to voluntary physical activity and detraining. Front. physiol. 10, 1328.
  17. Hesse, S., (1999) Treadmill training with partial body weight support in hemiparetic patients-further research needed. Neurorehabilit. Neural Repair 13, 179-181. https://doi.org/10.1177/154596839901300306
  18. Honda, Y., Takahashi, A., Tanaka, N., Kajiwara, Y., Sasaki, R., Okita, S., Sakamoto, J. and Okita, M. (2022) Muscle contractile exercise through a belt electrode device prevents myofiber atrophy, muscle contracture, and muscular pain in immobilized rat gastrocnemius muscle. PLoS One 17, e0275175.
  19. Jhuo, C. F., Hsieh, S. K., Chen, W. Y. and Tzen, J. T. C. (2023) Attenuation of skeletal muscle atrophy induced by dexamethasone in rats by teaghrelin supplementation. Molecules 28, 688.
  20. Jun, L., Robinson, M., Geetha, T., Broderick, T. L. and Babu, J. R. (2023) Prevalence and mechanisms of skeletal muscle atrophy in metabolic conditions. Int. J. Mol. Sci. 24, 2973.
  21. Kjobsted, R., Munk-Hansen, N., Birk, J. B., Foretz, M., Viollet, B., Bjornholm, M., Zierath, J. R., Treebak, J. T. and Wojtaszewski, J. F. (2017) Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK. Diabetes 66, 598-612. https://doi.org/10.2337/db16-0530
  22. Lai, S. W. T., Lopez Gonzalez, E. J., Zoukari, T., Ki, P. and Shuck, S. C. (2022) Methylglyoxal and its adducts: induction, repair, and association with disease. Chem. Res. Toxicol. 35, 1720-1746. https://doi.org/10.1021/acs.chemrestox.2c00160
  23. Lee, H., Kim, S. Y. and Lim, Y. (2023) Lespedeza bicolor extract supplementation reduced hyperglycemia-induced skeletal muscle damage by regulation of AMPK/SIRT/PGC1alpha-related energy metabolism in type 2 diabetic mice. Nutr. Res. 110, 1-13. https://doi.org/10.1016/j.nutres.2022.12.007
  24. Macedo, A. G., Almeida, T. A. F., Massini, D. A., De Paula, V. F., De Oliveira, D. M. and Pessoa Filho, D. M. (2023) Effects of exercise training on glucocorticoid-induced muscle atrophy: literature review. Steroids 195, 109240.
  25. Nogueira-Ferreira, R., Santos, I., Ferreira, R., Fontoura, D., Sousa-Mendes, C., Falcao-Pires, I., Lourenco, A. P., Leite-Moreira, A., Duarte, I. F. and Moreira-Goncalves, D. (2023) Exercise training impacts skeletal muscle remodelling induced by metabolic syndrome in ZSF1 rats through metabolism regulation. Biochim. Biophys. Acta Mol. Basis Dis. 1869, 166709.
  26. Orhan, C., Sahin, E., Er, B., Tuzcu, M., Lopes, A. P., Sahin, N., Juturu, V. and Sahin, K. (2021) Effects of exercise combined with undenatured type II collagen on endurance capacity, antioxidant status, muscle lipogenic genes and E3 ubiquitin ligases in rats. Animals (Basel) 11, 851.
  27. Park, E., Choi, H., Truong, C. S. and Jun, H. S. (2023) The inhibition of autophagy and pyroptosis by an ethanol extract of Nelumbo nuciferaleaf contributes to the amelioration of dexamethasone-induced muscle arophy. Nutrients 15, 804.
  28. Purnamasari, D., Tetrasiwi, E. N., Kartiko, G. J., Astrella, C., Husam, K. and Laksmi, P. W. (2022) Sarcopenia and chronic complications of type 2 diabetes mellitus. Rev. Diabet. Stud. 18, 157-165. https://doi.org/10.1900/RDS.2022.18.157
  29. Ramasamy, R., Yan, S. F. and Schmidt, A. M. (2006) Methylglyoxal comes of AGE. Cell 124, 258-260. https://doi.org/10.1016/j.cell.2006.01.002
  30. Rasmussen, B. B. and Phillips, S. M. (2003) Contractile and nutritional regulation of human muscle growth. Exerc. Sport Sci. Rev. 31, 127-131. https://doi.org/10.1097/00003677-200307000-00005
  31. Rebello, C. J., Zhang, D., Kirwan, J. P., Lowe, A. C., Emerson, C. J., Kracht, C. L., Steib, L. C., Greenway, F. L., Johnson, W. D. and Brown, J. C. (2023) Effect of exercise training on insulin-stimulated glucose disposal: a systematic review and meta-analysis of randomized controlled trials. Int. J. Obes. (Lond.) 47, 348-357. https://doi.org/10.1038/s41366-023-01283-8
  32. Sakai, H., Kimura, M., Isa, Y., Yabe, S., Maruyama, A., Tsuruno, Y., Kai, Y., Sato, F., Yumoto, T., Chiba, Y. and Narita, M. (2017) Effect of acute treadmill exercise on cisplatin-induced muscle atrophy in the mouse. Pflugers Arch. 469, 1495-1505. https://doi.org/10.1007/s00424-017-2045-4
  33. Sartori, R., Romanello, V. and Sandri, M. (2021) Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat. Commun. 12, 330.
  34. Savikj, M., Stocks, B., Sato, S., Caidahl, K., Krook, A., Deshmukh, A. S., Zierath, J. R. and Wallberg-Henriksson, H. (2022) Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients - a randomized crossover trial. Metabolism 135, 155268.
  35. Schalkwijk, C. G. and Stehouwer, C. D. A. (2020) Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular-complications, and other age-related diseases. Physiol. Rev. 100, 407-461. https://doi.org/10.1152/physrev.00001.2019
  36. Seo, D. Y., McGregor, R. A., Noh, S. J., Choi, S. J., Mishchenko, N. P., Fedoreyev, S. A., Stonik, V. A. and Han, J. (2015) Echinochrome A improves exercise capacity during short-term endurance training in rats. Mar. Drugs 13, 5722-5731. https://doi.org/10.3390/md13095722
  37. Shen, Y., Li, M., Wang, K., Qi, G., Liu, H., Wang, W., Ji, Y., Chang, M., Deng, C., Xu, F., Shen, M. and Sun, H. (2022) Diabetic muscular atrophy: Molecular mechanisms and promising therapies. Front. Endocrinol (Lausanne) 13, 917113.
  38. Shi, Y., Zhang, Z. W., Du, M. M., Wu, J. and Li, J. X. (2023) Saponin extract from Achyranthes bidentata Blume alleviates disuse-induced muscle atrophy through PI3K/Akt signaling pathway. J. Ethnopharmacol. 312, 116458.
  39. Smith, I. J., Aversa, Z., Alamdari, N., Petkova, V. and Hasselgren, P. O. (2010) Sepsis downregulates myostatin mRNA levels without altering myostatin protein levels in skeletal muscle. J. Cell. Biochem. 111, 1059-1073. https://doi.org/10.1002/jcb.22796
  40. Tariq, S., Goriparthi, L., Ismail, D., Kankeu Tonpouwo, G., Thapa, M., Khalid, K., Cooper, A. C. and Jean-Charles, G. (2023) Correlates of myopathy in diabetic patients taking statins. Cureus 15, e37708.
  41. Todoriki, S., Hosoda, Y., Yamamoto, T., Watanabe, M., Sekimoto, A., Sato, H., Mori, T., Miyazaki, M., Takahashi, N. and Sato, E. (2022) Methylglyoxal induces inflammation, metabolic modulation and oxidative stress in myoblast cells. Toxins (Basel) 14, 263.
  42. Yadav, N., Palkhede, J. D. and Kim, S. Y. (2023) Anti-glucotoxicity effect of phytoconstituents viainhibiting MGO-AGEs formation and nreaking MGO-AGEs. Int. J. Mol. Sci. 24, 7672.
  43. Yang, H. W., Oh, S., Chung, D. M., Seo, M., Park, S. J., Jeon, Y. J., Byun, K. and Ryu, B. (2022) Ishophloroglucin A, isolated from Ishige okamurae, alleviates dexamethasone-induced muscle atrophy through muscle protein metabolism in vivo. Mar. Drugs 20, 280.
  44. Zhang, H., Qi, G., Wang, K., Yang, J., Shen, Y., Yang, X., Chen, X., Yao, X., Gu, X., Qi, L., Zhou, C. and Sun, H. (2023) Oxidative stress: roles in skeletal muscle atrophy. Biochem. Pharmacol. 214, 115664.