Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2018R1D1A1B07046570), Ministry of Health & Welfare of Korea (HI21C0416) ,and National Cancer Center Grant (1710352 and 2210552). This study was also supported by the Research Core Center (Proteomics Core Team and Microscopy Core Team) of the National Cancer Center Korea. We thank Dr. Kyung-Hee Kim and Ms. Mi-ae Kim for technical support.
References
- Alexander, A., Cai, S. L., Kim, J., Nanez, A., Sahin, M., MacLean, K. H., Inoki, K., Guan, K. L., Shen, J., Person, M. D., Kusewitt, D., Mills, G. B., Kastan, M. B. and Walker, C. L. (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. U. S. A. 107, 4153-4158. https://doi.org/10.1073/pnas.0913860107
- Amaravadi, R. K., Kimmelman, A. C. and Debnath, J. (2019) Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167-1181. https://doi.org/10.1158/2159-8290.CD-19-0292
- Bensimon, A., Aebersold, R. and Shiloh, Y. (2011) Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett. 585, 1625-1639. https://doi.org/10.1016/j.febslet.2011.05.013
- Button, R. W., Roberts, S. L., Willis, T. L., Hanemann, C. O. and Luo, S. (2017) Accumulation of autophagosomes confers cytotoxicity. J. Biol. Chem. 292, 13599-13614. https://doi.org/10.1074/jbc.M117.782276
- Cheng, A., Tse, K.-H., Chow, H.-M., Gan, Y., Song, X., Ma, F., Qian, Y., Xuan Y., She, W. and Herrup, K. (2021) ATM loss disrupts the autophagy-lysosomal pathway. Autophagy 17, 1998-2010. https://doi.org/10.1080/15548627.2020.1805860
- Ciccia, A. and Elledge, S. J. (2010) The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179-204. https://doi.org/10.1016/j.molcel.2010.09.019
- Ditch, S. and Paull, T. T. (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem. Sci. 37, 15-22. https://doi.org/10.1016/j.tibs.2011.10.002
- Galluzzi, L., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San Pedro, J. M., Cecconi, F., Choi, A. M., Chu, C. T., Codogno, P., Colombo, M. I., Cuervo, A. M., Debnath, J., Deretic, V., Dikic, I., Eskelinen, E. L., Fimia, G. M., Fulda, S., Gewirtz, D. A., Green, D. R., Hansen, M., Harper, J. W., Jaattela, M., Johansen, T., Juhasz, G., Kimmelman, A. C., Kraft, C., Ktistakis, N. T., Kumar, S., Levine, B., Lopez-Otin, C., Madeo, F., Martens, S., Martinez, J., Melendez, A., Mizushima, N., Munz, C., Murphy, L. O., Penninger, J. M., Piacentini, M., Reggiori, F., Rubinsztein, D. C., Ryan, K. M., Santambrogio, L., Scorrano, L., Simon, A. K., Simon, H. U., Simonsen, A., Tavernarakis, N., Tooze, S. A., Yoshimori, T., Yuan, J., Yue, Z., Zhong, Q. and Kroemer, G. (2017) Molecular definitions of autophagy and related processes. EMBO J. 36, 1811-1836.
- Gewirtz, D. A. (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res. 74, 647-651. https://doi.org/10.1158/0008-5472.CAN-13-2966
- Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
- Golding, S. E., Rosenberg, E., Valerie, N., Hussaini, I., Frigerio, M., Cockcroft, X. F., Chong, W. Y., Hummersone, M., Rigoreau, L., Menear, K. A., O'Connor, M. J., Povirk, L. F., van Meter, T. and Valerie, K. (2009) Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8, 2894-2902. https://doi.org/10.1158/1535-7163.MCT-09-0519
- Guo, Q. Q., Wang, S. S., Zhang, S. S., Xu, H. D., Li, X. M., Guan, Y., Yi, F., Zhou, T. T., Jiang, B., Bai, N., Ma, M. T., Wang, Z., Feng, Y. L., Guo, W. D., Wu, X., Zhao, G. F., Fan, G. J., Zhang, S. P., Wang, C. G., Cao, L. Y., O'Rourke, B. P., Liu, S. H., Wang, P. Y., Han, S., Song, X. Y. and Cao, L. (2020) ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J. 39, e103111.
- Helleday, T., Petermann, E., Lundin, C., Hodgson, B. and Sharma, R. A. (2008) DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193-204. https://doi.org/10.1038/nrc2342
- Hickson, I., Zhao, Y., Richardson, C. J., Green, S. J., Martin, N. M., Orr, A. I., Reaper, P. M., Jackson, S. P., Curtin, N. J. and Smith, G. C. (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152-9159. https://doi.org/10.1158/0008-5472.CAN-04-2727
- Hwang, M., Jun, D. W., Kang, E. H., Yoon, K. A., Cheong, H., Kim, Y. H., Lee, C.-H. and Kim, S. (2019) EI24, as a component of autophagy, is involved in pancreatic cell proliferation. Front. Oncol. 9, 652.
- Jin, M. H. and Oh, D.-Y. (2019) ATM in DNA repair in cancer. Pharmacol. Ther. 203, 107391.
- Jun, D. W., Hwang, M., Kim, Y.-H., Kim, K.-T., Kim, S. and Lee, C.-H. (2016) DDRI-9: a novel DNA damage response inhibitor that blocks mitotic progression. Oncotarget 7, 17699-17710. https://doi.org/10.18632/oncotarget.7135
- Kimura, S., Noda, T. and Yoshimori, T. (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460. https://doi.org/10.4161/auto.4451
- Kimura, T., Takabatake, Y., Takahashi, A. and Isaka, Y. (2013) Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 73, 3-7. https://doi.org/10.1158/0008-5472.CAN-12-2464
- Kroemer, G., Marino, G. and Levine, B. (2010) Autophagy and the integrated stress response. Mol. Cell 40, 280-293. https://doi.org/10.1016/j.molcel.2010.09.023
- Kumar, A., Singh, U. K. and Chaudhary, A. (2015) Targeting autophagy to overcome drug resistance in cancer therapy. Future Med. Chem. 7, 1535-1542. https://doi.org/10.4155/fmc.15.88
- Levy, J. M. M., Towers, C. G. and Thorburn, A. (2017) Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528-542. https://doi.org/10.1038/nrc.2017.53
- Liang, N., He, Q., Liu, X. and Sun, H. (2019) Multifaceted roles of ATM in autophagy: from nonselective autophagy to selective autophagy. Cell Biochem. Funct. 37, 177-184. https://doi.org/10.1002/cbf.3385
- Liu, T., Zhang, J., Li, K., Deng, L. and Wang, H. (2020) Combination of an autophagy inducer and an autophagy inhibitor: a smarter strategy emerging in cancer therapy. Front. Pharmacol. 11, 408.
- Lord, C. J. and Ashworth, A. (2012) The DNA damage response and cancer therapy. Nature 481, 287-294. https://doi.org/10.1038/nature10760
- Maes, H., Rubio, N., Garg, A. D. and Agostinis, P. (2013) Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol. Med. 19, 428-446. https://doi.org/10.1016/j.molmed.2013.04.005
- Maruzs, T., Lorincz, P., Szatmari, Z., Szeplaki, S., Sandor, Z., Lakatos, Z., Puska, G., Juhasz, G. and Sass, M. (2015) Retromer ensures the degradation of autophagic cargo by maintaining lysosome function in Drosophila. Traffic 16, 1088-1107. https://doi.org/10.1111/tra.12309
- Matsuoka, S., Ballif, B. A, Smogorzewska, A., McDonald, E. R., 3rd, Hurov, K. E., Luo, J., Bakalarski, C. E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P. and Elledge, S. J. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-1166. https://doi.org/10.1126/science.1140321
- McMillan, K. J., Korswagen, H. C. and Cullen, P. J. (2017) The emerging role of retromer in neuroprotection. Curr. Opin. Cell Biol. 47, 72-82. https://doi.org/10.1016/j.ceb.2017.02.004
- Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
- Mizushima, N. and Komatsu, M. (2011) Autophagy: renovation of cells and tissues. Cell 147, 728-741. https://doi.org/10.1016/j.cell.2011.10.026
- Mulcahy Levy, J. M. and Thorburn, A. (2020) Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ. 27, 843-857. https://doi.org/10.1038/s41418-019-0474-7
- Shiloh, Y. and Ziv, Y. (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197-210. https://doi.org/10.1038/nrm3546
- Stagni, V., Ferri, A., Cirotti, C. and Barila, D. (2021) ATM kinase-dependent regulation of autophagy: a key player in senescence? Front. Cell Dev. Biol. 8, 599048.
- Zachari, M. and Ganley, I. G. (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61, 585-596. https://doi.org/10.1042/EBC20170021
- Zhang, J., Tripathi, D. N., Jing, J., Alexander, A., Kim, J., Powell, R. T., Dere, R., Tait-Mulder, J., Lee, J. H., Paull, T. T., Pandita, R. K., Charaka, V. K., Pandita, T. K., Kastan, M. B. and Walker, C. L. (2015) ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259-1269. https://doi.org/10.1038/ncb3230
- Zhang, X. J., Chen, S., Huang, K. X. and Le, W. D. (2013) Why should autophagic flux be assessed? Acta Pharmacol. Sin. 34, 595-599. https://doi.org/10.1038/aps.2012.184
- Zou, Y., Wang, Q., Li, B., Xie, B. and Wang, W. (2014) Temozolomide induces autophagy via ATM-AMPK-ULK1 pathways in glioma. Mol. Med. Rep. 10, 411-416. https://doi.org/10.3892/mmr.2014.2151