DOI QR코드

DOI QR Code

Ataxia-Telangiectasia Mutated Is Involved in Autolysosome Formation

  • Mihwa Hwang (Research Institute, National Cancer Center) ;
  • Dong Wha Jun (Research Institute, National Cancer Center) ;
  • Bo Ram Song (Research Institute, National Cancer Center) ;
  • Hanna Shim (Research Institute, National Cancer Center) ;
  • Chang-Hun Lee (Research Institute, National Cancer Center) ;
  • Sunshin Kim (Research Institute, National Cancer Center)
  • Received : 2023.01.07
  • Accepted : 2023.02.22
  • Published : 2023.09.01

Abstract

Ataxia-telangiectasia mutated (ATM), a master kinase of the DNA damage response (DDR), phosphorylates a multitude of substrates to activate signaling pathways after DNA double-strand breaks (DSBs). ATM inhibitors have been evaluated as anticancer drugs to potentiate the cytotoxicity of DNA damage-based cancer therapy. ATM is also involved in autophagy, a conserved cellular process that maintains homeostasis by degrading unnecessary proteins and dysfunctional organelles. In this study, we report that ATM inhibitors (KU-55933 and KU-60019) provoked accumulation of autophagosomes and p62 and restrained autolysosome formation. Under autophagy-inducing conditions, the ATM inhibitors caused excessive autophagosome accumulation and cell death. This new function of ATM in autophagy was also observed in numerous cell lines. Repression of ATM expression using an siRNA inhibited autophagic flux at the autolysosome formation step and induced cell death under autophagy-inducing conditions. Taken together, our results suggest that ATM is involved in autolysosome formation and that the use of ATM inhibitors in cancer therapy may be expanded.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2018R1D1A1B07046570), Ministry of Health & Welfare of Korea (HI21C0416) ,and National Cancer Center Grant (1710352 and 2210552). This study was also supported by the Research Core Center (Proteomics Core Team and Microscopy Core Team) of the National Cancer Center Korea. We thank Dr. Kyung-Hee Kim and Ms. Mi-ae Kim for technical support.

References

  1. Alexander, A., Cai, S. L., Kim, J., Nanez, A., Sahin, M., MacLean, K. H., Inoki, K., Guan, K. L., Shen, J., Person, M. D., Kusewitt, D., Mills, G. B., Kastan, M. B. and Walker, C. L. (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. U. S. A. 107, 4153-4158. https://doi.org/10.1073/pnas.0913860107
  2. Amaravadi, R. K., Kimmelman, A. C. and Debnath, J. (2019) Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167-1181. https://doi.org/10.1158/2159-8290.CD-19-0292
  3. Bensimon, A., Aebersold, R. and Shiloh, Y. (2011) Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett. 585, 1625-1639. https://doi.org/10.1016/j.febslet.2011.05.013
  4. Button, R. W., Roberts, S. L., Willis, T. L., Hanemann, C. O. and Luo, S. (2017) Accumulation of autophagosomes confers cytotoxicity. J. Biol. Chem. 292, 13599-13614. https://doi.org/10.1074/jbc.M117.782276
  5. Cheng, A., Tse, K.-H., Chow, H.-M., Gan, Y., Song, X., Ma, F., Qian, Y., Xuan Y., She, W. and Herrup, K. (2021) ATM loss disrupts the autophagy-lysosomal pathway. Autophagy 17, 1998-2010. https://doi.org/10.1080/15548627.2020.1805860
  6. Ciccia, A. and Elledge, S. J. (2010) The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179-204. https://doi.org/10.1016/j.molcel.2010.09.019
  7. Ditch, S. and Paull, T. T. (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem. Sci. 37, 15-22. https://doi.org/10.1016/j.tibs.2011.10.002
  8. Galluzzi, L., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San Pedro, J. M., Cecconi, F., Choi, A. M., Chu, C. T., Codogno, P., Colombo, M. I., Cuervo, A. M., Debnath, J., Deretic, V., Dikic, I., Eskelinen, E. L., Fimia, G. M., Fulda, S., Gewirtz, D. A., Green, D. R., Hansen, M., Harper, J. W., Jaattela, M., Johansen, T., Juhasz, G., Kimmelman, A. C., Kraft, C., Ktistakis, N. T., Kumar, S., Levine, B., Lopez-Otin, C., Madeo, F., Martens, S., Martinez, J., Melendez, A., Mizushima, N., Munz, C., Murphy, L. O., Penninger, J. M., Piacentini, M., Reggiori, F., Rubinsztein, D. C., Ryan, K. M., Santambrogio, L., Scorrano, L., Simon, A. K., Simon, H. U., Simonsen, A., Tavernarakis, N., Tooze, S. A., Yoshimori, T., Yuan, J., Yue, Z., Zhong, Q. and Kroemer, G. (2017) Molecular definitions of autophagy and related processes. EMBO J. 36, 1811-1836.
  9. Gewirtz, D. A. (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res. 74, 647-651. https://doi.org/10.1158/0008-5472.CAN-13-2966
  10. Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
  11. Golding, S. E., Rosenberg, E., Valerie, N., Hussaini, I., Frigerio, M., Cockcroft, X. F., Chong, W. Y., Hummersone, M., Rigoreau, L., Menear, K. A., O'Connor, M. J., Povirk, L. F., van Meter, T. and Valerie, K. (2009) Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8, 2894-2902. https://doi.org/10.1158/1535-7163.MCT-09-0519
  12. Guo, Q. Q., Wang, S. S., Zhang, S. S., Xu, H. D., Li, X. M., Guan, Y., Yi, F., Zhou, T. T., Jiang, B., Bai, N., Ma, M. T., Wang, Z., Feng, Y. L., Guo, W. D., Wu, X., Zhao, G. F., Fan, G. J., Zhang, S. P., Wang, C. G., Cao, L. Y., O'Rourke, B. P., Liu, S. H., Wang, P. Y., Han, S., Song, X. Y. and Cao, L. (2020) ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J. 39, e103111.
  13. Helleday, T., Petermann, E., Lundin, C., Hodgson, B. and Sharma, R. A. (2008) DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193-204. https://doi.org/10.1038/nrc2342
  14. Hickson, I., Zhao, Y., Richardson, C. J., Green, S. J., Martin, N. M., Orr, A. I., Reaper, P. M., Jackson, S. P., Curtin, N. J. and Smith, G. C. (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152-9159. https://doi.org/10.1158/0008-5472.CAN-04-2727
  15. Hwang, M., Jun, D. W., Kang, E. H., Yoon, K. A., Cheong, H., Kim, Y. H., Lee, C.-H. and Kim, S. (2019) EI24, as a component of autophagy, is involved in pancreatic cell proliferation. Front. Oncol. 9, 652.
  16. Jin, M. H. and Oh, D.-Y. (2019) ATM in DNA repair in cancer. Pharmacol. Ther. 203, 107391.
  17. Jun, D. W., Hwang, M., Kim, Y.-H., Kim, K.-T., Kim, S. and Lee, C.-H. (2016) DDRI-9: a novel DNA damage response inhibitor that blocks mitotic progression. Oncotarget 7, 17699-17710. https://doi.org/10.18632/oncotarget.7135
  18. Kimura, S., Noda, T. and Yoshimori, T. (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460. https://doi.org/10.4161/auto.4451
  19. Kimura, T., Takabatake, Y., Takahashi, A. and Isaka, Y. (2013) Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 73, 3-7. https://doi.org/10.1158/0008-5472.CAN-12-2464
  20. Kroemer, G., Marino, G. and Levine, B. (2010) Autophagy and the integrated stress response. Mol. Cell 40, 280-293. https://doi.org/10.1016/j.molcel.2010.09.023
  21. Kumar, A., Singh, U. K. and Chaudhary, A. (2015) Targeting autophagy to overcome drug resistance in cancer therapy. Future Med. Chem. 7, 1535-1542. https://doi.org/10.4155/fmc.15.88
  22. Levy, J. M. M., Towers, C. G. and Thorburn, A. (2017) Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528-542. https://doi.org/10.1038/nrc.2017.53
  23. Liang, N., He, Q., Liu, X. and Sun, H. (2019) Multifaceted roles of ATM in autophagy: from nonselective autophagy to selective autophagy. Cell Biochem. Funct. 37, 177-184. https://doi.org/10.1002/cbf.3385
  24. Liu, T., Zhang, J., Li, K., Deng, L. and Wang, H. (2020) Combination of an autophagy inducer and an autophagy inhibitor: a smarter strategy emerging in cancer therapy. Front. Pharmacol. 11, 408.
  25. Lord, C. J. and Ashworth, A. (2012) The DNA damage response and cancer therapy. Nature 481, 287-294. https://doi.org/10.1038/nature10760
  26. Maes, H., Rubio, N., Garg, A. D. and Agostinis, P. (2013) Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol. Med. 19, 428-446. https://doi.org/10.1016/j.molmed.2013.04.005
  27. Maruzs, T., Lorincz, P., Szatmari, Z., Szeplaki, S., Sandor, Z., Lakatos, Z., Puska, G., Juhasz, G. and Sass, M. (2015) Retromer ensures the degradation of autophagic cargo by maintaining lysosome function in Drosophila. Traffic 16, 1088-1107. https://doi.org/10.1111/tra.12309
  28. Matsuoka, S., Ballif, B. A, Smogorzewska, A., McDonald, E. R., 3rd, Hurov, K. E., Luo, J., Bakalarski, C. E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P. and Elledge, S. J. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160-1166. https://doi.org/10.1126/science.1140321
  29. McMillan, K. J., Korswagen, H. C. and Cullen, P. J. (2017) The emerging role of retromer in neuroprotection. Curr. Opin. Cell Biol. 47, 72-82. https://doi.org/10.1016/j.ceb.2017.02.004
  30. Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
  31. Mizushima, N. and Komatsu, M. (2011) Autophagy: renovation of cells and tissues. Cell 147, 728-741. https://doi.org/10.1016/j.cell.2011.10.026
  32. Mulcahy Levy, J. M. and Thorburn, A. (2020) Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ. 27, 843-857. https://doi.org/10.1038/s41418-019-0474-7
  33. Shiloh, Y. and Ziv, Y. (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197-210. https://doi.org/10.1038/nrm3546
  34. Stagni, V., Ferri, A., Cirotti, C. and Barila, D. (2021) ATM kinase-dependent regulation of autophagy: a key player in senescence? Front. Cell Dev. Biol. 8, 599048.
  35. Zachari, M. and Ganley, I. G. (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61, 585-596. https://doi.org/10.1042/EBC20170021
  36. Zhang, J., Tripathi, D. N., Jing, J., Alexander, A., Kim, J., Powell, R. T., Dere, R., Tait-Mulder, J., Lee, J. H., Paull, T. T., Pandita, R. K., Charaka, V. K., Pandita, T. K., Kastan, M. B. and Walker, C. L. (2015) ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259-1269. https://doi.org/10.1038/ncb3230
  37. Zhang, X. J., Chen, S., Huang, K. X. and Le, W. D. (2013) Why should autophagic flux be assessed? Acta Pharmacol. Sin. 34, 595-599. https://doi.org/10.1038/aps.2012.184
  38. Zou, Y., Wang, Q., Li, B., Xie, B. and Wang, W. (2014) Temozolomide induces autophagy via ATM-AMPK-ULK1 pathways in glioma. Mol. Med. Rep. 10, 411-416. https://doi.org/10.3892/mmr.2014.2151