Non-pneumatic Tire Design System based on Generative Adversarial Networks

적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템

  • JuYong Seong ;
  • Hyunjun Lee ;
  • Sungchul Lee
  • 성주용 (선문대학교 컴퓨터공학부) ;
  • 이현준 (AI Networks) ;
  • 이성철 (선문대학교 컴퓨터공학과)
  • Received : 2023.11.27
  • Accepted : 2023.12.07
  • Published : 2023.12.30

Abstract

The design of non-pneumatic tires, which are created by filling the space between the wheel and the tread with elastomeric compounds or polygonal spokes, has become an important research topic in the automotive and aerospace industries. In this study, a system was designed for the design of non-pneumatic tires through the implementation of a generative adversarial network. We specifically examined factors that could impact the design, including the type of non-pneumatic tire, its intended usage environment, manufacturing techniques, distinctions from pneumatic tires, and how spoke design affects load distribution. Using OpenCV, various shapes and spoke configurations were generated as images, and a GAN model was trained on the projected GANs to generate shapes and spokes for non-pneumatic tire designs. The designed non-pneumatic tires were labeled as available or not, and a Vision Transformer image classification AI model was trained on these labels for classification purposes. Evaluation of the classification model show convergence to a near-zero loss and a 99% accuracy rate confirming the generation of non-pneumatic tire designs.

자동차 타이어의 휠과 트레드 사이에 탄성중합체 또는 다각형의 스포크를 채우는 방식으로 제작하는 비공기압 타이어는 자동차 관련 학계 및 항공우주 업계의 중요한 연구 주제가 되고 있다. 본 연구에서는 생성형 적대 신경망을 기반으로 비공기압 타이어 디자인을 생성하는 시스템 개발했다. 특히 비공기압 타이어의 종류와 사용 환경, 제작 방식, 공기압 타이어와의 차이점 그리고 스포크 디자인에 따른 하중 전달의 변화 등 디자인에 영향을 미칠만한 변수들에 대한 조사를 실시했다. 이 연구는 OpenCV를 통해 다양한 스포크 형태의 이미지를 만들고, projected GANs에 학습시켜 비공기압 타이어 디자인에 사용될 스포크를 생성했다. 디자인된 비공기압 타이어는 사용 가능 및 불가능으로 레이블링하고, 이를 Vision Transformer 이미지 분류 AI 모델에 학습시켜 분류하도록 하였다. 최종적으로 분류 모델의 평가를 통해 0에 가까운 loss의 수렴, 99%의 정확도를 확인했다. 차후 도형 및 스포크 이미지와 알고리즘을 이용한 디자인이 아닌, 완전 자동화 시스템의 개발과 더 나아가 3D의 물리적 해석 없이 사용 가능한 디자인을 생성하는 것을 목표로 한다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 디자인산업기술개발사업('20019083', '비공압 타이어 디자인 기술개발')의 지원으로 이루어졌습니다.

References

  1. Gent, Alan Neville and Walter, Joseph D., Pneumatic Tire, Mechanical Engineering Faculty Research, 854, 2006
  2. Karpenko, M., Prentkovskis, O., Skackauskas, P., "Comparison Analysis Between Pneumatic and Airless Tires by Computational Modelling for Avoiding Road Traffic Accidents.", Reliability and Statistics in Transportation and Communicatio, Riga, Latvia, pp. 295-305, October 2022., https://doi.org/10.1007/978-3-031-26655-3_28
  3. W. Wang, S. Yan, S.G. Zhao, Experimental verification and finite element modeling of radial truck tire under static loading, J. Reinf. Plast. Comp. 32, 490-498., 2013
  4. Sardinha, M., Fatima Vaz, M., Ramos, T. R., Reis, L., "Design, properties, and applications of non-pneumatic tires: A review", Proceedings of the Institution of Mechanical Engineers, Vol. 237, No. 11, pp. 2277-2297, May 2023., https://doi:10.1177/14644207231177302
  5. Xiaochao Jin, Cheng Hou, Xueling Fan, Yongle Sun, Jinan Lv, Chunsheng Lu, "Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes", Composite Structures, Vol. 187, pp. 27-35, March 2018., https://doi.org/10.1016/j.compstruct.2017.12.044
  6. Jackowski, Jerzy, Marcin Wieczorek, Marcin Zmuda, "Energy consumption estimation of nonpneumatic tire and pneumatic tire during rolling." Journal of KONES, Vol. 25, No.1, pp. 159-168, 2018., https://doi.org/10.5604/01.3001.0012.2463
  7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y., "Generative adversarial nets", Advances in neural information processing systems, Montreal, Quebec, Canada, pp. 2672-2680, Jun 2014., https://doi.org/10.48550/arXiv.1406.2661
  8. Choi Y, Uh Y, Yoo J, Ha JW., "Stargan v2: Diverse image synthesis for multiple domains." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition., Seattle, WA, USA, pp. 8185-8194, June 2020., https://doi.org/10.48550/arXiv.1912.01865
  9. Singh, M., Bajpai, U., V, V. and Prasath, S., "Generation of fashionable clothes using generative adversarial networks: A preliminary feasibility study.", International Journal of Clothing Science and Technology, Vol. 32, No. 2, pp.177-187, April 2020, https://doi.org/10.1108/IJCST-12-2018- 0148
  10. Schrum, Jacob, Vanessa Volz, and Sebastian Risi., "Cppn2gan: Combining compositional pattern producing networks and gans for large-scale pattern generation.", Proceedings of the 2020 Genetic and Evolutionary Computation Conference., pp. 139-147, New YorkNYUnited States, Apr 2020., https://doi.org/10.48550/arXiv.2004.01703
  11. Baur, Christoph, Shadi Albarqouni, and Nassir Navab., "Generating highly realistic images of skin lesions with GANs.", OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis., Granada, Spain, pp. 260- 267, September 2018.
  12. Sauer, A., Chitta, K., Muller, J., & Geiger, A., "Projected gans converge faster.", Advances in Neural Information Processing Systems, pp. 17480-17492., Nov 2021., https://doi.org/10.48550/arXiv.2111.01007
  13. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S. and Uszkoreit, J., "An image is worth 16x16 words: Transformers for image recognition at scale.", arXiv preprint arXiv:2010.11929., Jun 2021., https://doi.org/10.48550/arXiv.2010.11929
  14. Jackowski, J., Zmuda, M. and Wieczorek, M., "Comparative analysis of small size non-pneumatic tires and pneumatic tires-radial stiffness and hysteresis, selected parameters of the contact patch." Maintenance & Reliability/Eksploatacja i Niezawodnosc, Vol. 25, No. 3, pp. 1-22, July 2023., https://doi.org/10.17531/ein/167362
  15. Ju, J., Veeramurthy, M., Summers, J.D. and Thompson, L., "Rolling Resistance of a Nonpneumatic Tire Having a Porous Elastomer Composite Shear Band ", Tire Science and Technology, Vol. 41, No. 3, pp. 154-173, July 2013., https://doi.org/10.2346/tire.13.410303
  16. Deng, Y., Wang, Z., Shen, H., Gong, J. and Xiao, Z., "A comprehensive review on non-pneumatic tyre research." Materials & Design, Vol. 227, pp. 111742, March 2023., https://doi.org/10.1016/j.matdes.2023.111742
  17. Iglesias, G., Talavera, E. and Diaz-A lvarez, A., 2023., "A survey on GANs for computer vision: Recent research, analysis and taxonomy.", Computer Science Review, Vol. 48, pp. 100553, May 2023., https://doi.org/10.1016/j.cosrev.2023.100553
  18. Touseef Iqbal, Shaima Qureshi, "The survey: Text generation models in deep learning", Computer and Information Sciences, Vol. 34, No. 6, pp. 2515-2528, May 2023., https://doi.org/10.1016/j.jksuci.2020.04.001
  19. Zhang, D., Ma, M. & Xia, L. A comprehensive review on GANs for time-series signals. Neural Comput & Applic 34, Vol. 34, pp. 3551-3571, January 2022., https://doi.org/10.1007/s00521-022- 06888-0
  20. Jeong JJ, Tariq A, Adejumo T, Trivedi H, Gichoya JW, Banerjee I., "Systematic Review of Generative Adversarial Networks (GANs) for Medical Image Classification and Segmentation.", J Digit Imaging. Journal of Digital Imaging.,Vol. 35, No. 2, pp. 137-152, April 2022., https://doi.org/10.1007/s10278-021-00556-w
  21. Nash, John. "Non-cooperative games." Annals of mathematics, Vol. 54, No. 2, pp. 286-295, September 1951., https://doi.org/10.2307/1969529
  22. Fedorova, Stanislava., "GANs for urban design.", arXiv preprint arXiv:2105.01727, May 2021., https://doi.org/10.48550/arXiv.2105.01727
  23. Niroshan, L. and Carswell, J.D., "Poly-GAN: Regularizing Polygons with Generative Adversarial Networks.", In International Symposium on Web and Wireless Geographical Information Systems, Vol. 13912, pp. 179-193, Jun 2023., https://doi.org/10.1007/978-3-031-34612-5_13
  24. OpenStreetMap, Available: https://www.openstreetmap.org
  25. Niroshan, Lasith, Carswell, James D., "OSM-GAN: Using Generative Adversarial Networks for Detecting Change in High-Resolution Spatial Images", Springer International Publishing, Vol. 143, pp. 95-105, June 2022., https://doi.org/10.1007/978-3-031-08017-3_9
  26. Zorzi, S., Bittner, K. and Fraundorfer, F., "Machine-learned regularization and polygonization of building segmentation masks." International Conference on Pattern Recognition, MiCo Milano Congress Center, ITALY, pp. 3098-3105, January 2021, https://doi.org/10.48550/arXiv.2007.12587
  27. Kato, N., Osone, H., Oomori, K., Ooi, C.W. and Ochiai, Y., "Gans-based clothes design: Pattern maker is all you need to design clothing." In Proceedings of the 10th Augmented Human International Conference, New York, NY, United States, March 2019, pp. 1-7, https://doi.org/10.1145/3311823.3311863
  28. OpenCV, available: https://opencv.org/
  29. Suarez, Gloria Bueno Garcia Oscar Deniz. Learning image processing with OpenCV. 2013.
  30. Chandan, G., Jain, A. and Jain, H., "Real time object detection and tracking using Deep Learning and OpenCV.", In 2018 International Conference on inventive research in computing applications (ICIRCA), Coimbatore, India, pp. 1305-1308, July 2018, https://doi.org/10.1109/ICIRCA.2018.8597266
  31. N. Boyko, O. Basystiuk and N. Shakhovska, "Performance Evaluation and Comparison of Software for Face Recognition, Based on Dlib and Opencv Library," 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, Aug 2018, pp. 478-482, https://doi.org/10.1109/DSMP.2018.8478556.
  32. Montatore, M., "Real-time object recognition in industrial automation processes", Diss. Politecnico di Torino, pp. 101, 2022.
  33. Sedgwick, Philip. "Pearson's correlation coefficient.", pp. 345, July 2012, https://doi.org/10.1136/bmj.e4483
  34. Zhou Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," in IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, April 2004, https://doi.org/10.1109/TIP.2003.819861.
  35. Kieffer, B., Babaie, M., Kalra, S. and Tizhoosh, H.R., 2017, November. "Convolutional neural networks for histopathology image classification: Training vs. using pre-trained networks.", In 2017 seventh international conference on image processing theory, tools and applications (IPTA), Montreal, Canada, pp. 1-6, Oct 2017, https://doi.org/10.48550/arXiv.1710.05726
  36. Ronneberger, O., Fischer, P. and Brox, T., "U-net: Convolutional networks for biomedical image segmentation.", In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 2015, https://doi.org/10.48550/arXiv.1505.04597
  37. ImageNet Dataset, Available: https://www.image-net.org/
  38. Tan, M., Le, Q., "Efficientnet: Rethinking model scaling for convolutional neural networks.", In International conference on machine learning, Long Beach Convention Center, Long Beach, pp. 6105-6114, May 2019, https://doi.org/10.48550/arXiv.1905.11946
  39. K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition", 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770- 778, June 2016, https://doi.org/10.1109/CVPR.2016.90.
  40. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H., "Training data-efficient image transformers & distillation through attention.", In International conference on machine learning, pp. 10347-10357, Jan 2021, https://doi.org/10.48550/arXiv.2012.12877
  41. Pyinstaller, Available: https://pyinstaller.org/en/stable/
  42. Tkinter, Available: https://docs.python.org/3/library/tkinter.html
  43. O'Shea, K. and Nash, R., "An introduction to convolutional neural networks.", arXiv preprint arXiv:1511.0845, Nov 2015., https://doi.org/10.48550/arXiv.1511.08458
  44. Visa, S., Ramsay, B., Ralescu, A.L. and Van Der Knaap, E., 2011. "Confusion matrix-based feature selection.", Maics, Vol. 710, No. 1, pp. 120-127, January 2011,
  45. Bradley, A.P., "The use of the area under the ROC curve in the evaluation of machine learning algorithms.", Pattern recognition, Vol. 30, No. 7, pp. 1145-1159, July 1997, https://doi.org/10.1016/S0031-3203(96)00142-2
  46. Karras, T., Aittala, M., Laine, S., Harkonen, E., Hellsten, J., Lehtinen, J. and Aila, T., 2021. Aliasfree generative adversarial networks., Advances in Neural Information Processing Systems 34, May 2022, pp.852-863.