DOI QR코드

DOI QR Code

Morphological and Phylogenetic Analyses Reveal a New Species of Genus Monochaetia Belonging to the Family Sporocadaceae in Korea

  • Seong-Keun Lim (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kallol Das (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Soo-Min Hong (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Sang Jae Suh (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seung-Yeol Lee (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Hee-Young Jung (College of Agriculture and Life Sciences, Kyungpook National University)
  • 투고 : 2023.03.08
  • 심사 : 2023.03.22
  • 발행 : 2023.04.30

초록

The fungal strain belonging to the genus Monochaetia of the family Sporocadaceae was isolated from hairy long-horned toad beetle (Moechotypa diphysis) during the screening of microfungi associated with insects from Gangwon Province, Korea. The strain KNUF-6L2F produced white, light brown to dirty black surface, and olivaceous green colonies with the higher growth, while the closest strain M. ilicis KUMCC 15-0520T were light brown to brown, and M. schimae SAUCC 212201T light brown to brown toward center. The strain KNUF-6L2F produced shorter (5.7-14.0 ㎛) apical appendages than M. ilicis (6.0-24.0 ㎛), but similar to M. schimae (7.0-12.5 ㎛). Three median cells of KNUF-6L2F were light brown to olivaceous green, whereas brown and olivaceous cells were observed from M. ilicis and M. schimae, respectively. And the strain KNUF-6L2F produced larger conidiogenous cells than M. ilicis and M. schimae. Additionally, phylogenetic analyses based on molecular datasets of internal transcribed spacer (ITS) regions, translation elongation factor 1-alpha (TEF1α), and β-tubulin (TUB2) genes corroborated the strain's originality. Thus, the strain is different from other known Monochaetia species, according to molecular phylogeny and morophology, hence we suggested the new species Monochaetia mediana sp. nov. and provided a descriptive illustration.

키워드

과제정보

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea [NIBR202231206].

참고문헌

  1. Maharachchikumbura SSN, Guo LD, Chukeatirote E, et al. A destructive new disease of Syzygium samarangense in Thailand caused by the new species Pestalotiopsis samarangensis. Trop Plant Pathol. 2013;38(3):227-235. https://doi.org/10.1590/S1982-56762013005000002
  2. Jayawardena RS, Zhang W, Liu M, et al. Identification and characterization of Pestalotiopsis-like fungi related to grapevine diseases in China. Fungal Biol. 2015;119(5):348-361. https://doi.org/10.1016/j.funbio.2014.11.001
  3. Liu F, Bonthond G, Groenewald JZ, et al. Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Stud Mycol. 2019;92:287-415. https://doi.org/10.1016/j.simyco.2018.11.001
  4. Jaklitsch WM, Gardiennet A, Voglmayr H. Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora. Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia. 2016;37:82-105. https://doi.org/10.3767/003158516X690475
  5. Samarakoon M. Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). Mycosphere. 2016;7(11):1746-1761. https://doi.org/10.5943/mycosphere/7/11/9
  6. Wijayawardene NN, Hyde KD, Rajeshkumar KC, et al. Notes for genera: Ascomycota. Fungal Divers. 2017;86(1):1-594. https://doi.org/10.1007/s13225-017-0386-0
  7. Allescher A. Fungi Imperfecti: Gefarbt-sporige Sphaerioideen. In: Kummer E. Rabenhorst's Kryptogamen-Flora von Deutschland. Osterreich und der Schweiz. 2nd ed. Leipzig: Kummer; 1902. p. 65-128.
  8. Steyaert RL. Contribution a l'etude monographique de Pestalotia De Not. et Monochaetia Sacc. (Truncatella gen. nov. et Pestalotiopsis gen. nov.). Bulletin du Jardin Botanique de l'Etat a Bruxelles. 1949;19(3):285-354. https://doi.org/10.2307/3666710
  9. Guba EF. Monograph of Monochaetia and Pestalotia. Cambridge: Harvard University Press; 1961.
  10. Senanayake IC, Maharachchikumbura SSN, Hyde KD, et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers. 2015;73(1):73-144. https://doi.org/10.1007/s13225-015-0340-y
  11. Mehrotra RS, Aneja KR. An introduction to mycology. New Delhi: New Age International (P) limited, Publishers; 1990.
  12. de Silva NI, Phookamsak R, Maharachchikumbura SSN, et al. Monochaetia ilexae sp. nov. (Pestalotiopsidaceae) from Yunnan province in China. Phytotaxa. 2017;291(2):123-132. https://doi.org/10.11646/phytotaxa.291.2.3
  13. Strobel GA, Hess WM, Ford F, et al. Taxol from fungal endophytes and the tissue of biodiversity. J Ind Micro Biotech. 1996;17(5-6):417-423. https://doi.org/10.1007/BF01574772
  14. Li JY, Harper JK, Grant DM, et al. Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry. 2001;56(5):463-468. https://doi.org/10.1016/S0031-9422(00)00408-8
  15. Komori T, Yamashita M, Tsurumi Y, et al. Chaeticandin, a novel papulacandin I. Fermentation, isolation and characterization. J Antibiot. 1985;38(4):455-459. https://doi.org/10.7164/antibiotics.38.455
  16. Das K, Kim JH, Choi KS, et al. A new report of Biscogniauxia petrensis isolated from mosquitoes in Korea. Kor J Mycol. 2020;48:87-93.
  17. Zhang Z, Liu R, Liu S, et al. Morphological and phylogenetic analyses reveal two new species of Sporocadaceae from Hainan, China. MycoKeys. 2022;88:171-192. https://doi.org/10.3897/mycokeys.88.82229
  18. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  19. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York (NY): Academic Press, Inc.; 1990. p. 315-322.
  20. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  21. Rehner SA, Samuels GJ. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res. 1994;98(6):625-634. https://doi.org/10.1016/S0953-7562(09)80409-7
  22. Glass NL, Donaldson G. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  23. O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium were nonorthologous. Mol Phylogenet Evol. 1997;7(1):103-116. https://doi.org/10.1006/mpev.1996.0376
  24. O'Donnell K, Kistler HC, Cigelnik E, et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA. 1998;95(5):2044-2049. https://doi.org/10.1073/pnas.95.5.2044
  25. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. https://doi.org/10.1080/00275514.1999.12061051
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120. https://doi.org/10.1007/BF01731581
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-425.
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368-376. https://doi.org/10.1007/BF01734359
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20(4):406-416. https://doi.org/10.2307/2412116
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  31. Jiang N, Fan XL, Tian CM. Identification and characterization of leaf-inhabiting fungi from Castanea plantations in China. JoF. 2021;7(1):64.
  32. Gonthier P, Gennaro M, Nicolotti G. Effects of water stress on the endophytic mycota of Quercus robur. Fungal Divers. 2006;21:69-80.
  33. Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016;77(1):1-316. https://doi.org/10.1007/s13225-016-0360-2
  34. de Silva N, Maharachchikumbura SSN, Thambugala KM, et al. Monochaetia sinensis sp. nov. from Yunnan province in China. Phytotaxa. 2018;375(1):59-69. https://doi.org/10.11646/phytotaxa.375.1.2
  35. Crous PW, Schumacher RK, Wingfield MJ, et al. New and interesting fungi. 1. Fungal Syst Evol. 2018;1(1):169-215. https://doi.org/10.3114/fuse.2018.01.08
  36. Subramaniam Y, Subbiah R, Balan L, et al. Bioprospecting of bioactive metabolites from Monochaetia karsteni. J Pure Appl Microbiol. 2020;14(2):1557-1566. https://doi.org/10.22207/JPAM.14.2.54
  37. Zhao J, Zhou L, Wang J. Endophytic fungi for producing bioactive compounds originally from their host plants. In: Mendez-Vilas DA, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz: Formatex Research Center; 2011. p. 567-576.
  38. Nguyen TTT, Lim HJ, Chu SJ, et al. Two new species and three new records of Ascomycetes in Korea. Mycobiology. 2022;50(1):30-45. https://doi.org/10.1080/12298093.2022.2038843