DOI QR코드

DOI QR Code

Evaluation of the clinical and radiographic effectiveness of treating peri-implant bone defects with a new biphasic calcium phosphate bone graft: a prospective, multicenter randomized controlled trial

  • Jae-Hong Lee (Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University) ;
  • Hyun-wook An (Research & Development Center, MegaGen Implant Co., Ltd.) ;
  • Jae-Seung Im (Research & Development Center, MegaGen Implant Co., Ltd.) ;
  • Woo-Joo Kim (Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University) ;
  • Dong-Won Lee (Department of Periodontology, Gangnam Severance Hospital, College of Dentistry, Yonsei University) ;
  • Jeong-Ho Yun (Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University)
  • Received : 2023.01.27
  • Accepted : 2023.05.03
  • Published : 2023.08.31

Abstract

Purpose: Biphasic calcium phosphate (BCP), a widely used biomaterial for bone regeneration, contains synthetic hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), the ratio of which can be adjusted to modulate the rate of degradation. The aim of this study was to evaluate the clinical and radiographic benefits of reconstructing peri-implant bone defects with a newly developed BCP consisting of 60% β-TCP and 40% HA compared to demineralized bovine bone mineral (DBBM). Methods: This prospective, multicenter, parallel, single-blind randomized controlled trial was conducted at the periodontology departments of 3 different dental hospitals. Changes in clinical (defect width and height) and radiographic (augmented horizontal bone thickness) parameters were measured between implant surgery with guided bone regeneration (GBR) and re-entry surgery. Postoperative discomfort (severity and duration of pain and swelling) and early soft-tissue wound healing (dehiscence and inflammation) were also assessed. Data were compared between the BCP (test) and DBBM (control) groups using the independent t-test and the χ2 test. Results: Of the 53 cases included, 27 were in the test group and 26 were in the control group. After a healing period of 18 weeks, the full and mean resolution of buccal dehiscence defects were 59.3% (n=16) and 71.3% in the test group and 42.3% (n=11) and 57.9% in the control group, respectively. There were no significant differences between the groups in terms of the change in mean horizontal bone augmentation (test group: -0.50±0.66 mm vs. control groups: -0.66±0.83 mm, P=0.133), postoperative discomfort, or early wound healing. No adverse or fatal complications occurred in either group. Conclusions: The GBR procedure with the newly developed BCP showed favorable clinical, radiographic, postoperative discomfort-related, and early wound healing outcomes for peri-implant dehiscence defects that were similar to those for DBBM.

Keywords

Acknowledgement

This work was supported by a Korea Medical Device Development Fund grant funded by the Korean government (project number: KMDF_PR_20200901_0299).

References

  1. Clementini M, Morlupi A, Canullo L, Agrestini C, Barlattani A. Success rate of dental implants inserted in horizontal and vertical guided bone regenerated areas: a systematic review. Int J Oral Maxillofac Implants 2012;41:847-52. https://doi.org/10.1016/j.ijom.2012.03.016
  2. Shamsoddin E, Houshmand B, Golabgiran M. Biomaterial selection for bone augmentation in implant dentistry: a systematic review. J Adv Pharm Technol Res 2019;10:46-50. https://doi.org/10.4103/japtr.JAPTR_327_18
  3. Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules 2021;26:3007.
  4. Yamada M, Egusa H. Current bone substitutes for implant dentistry. J Prosthodont Res 2018;62:152-61. https://doi.org/10.1016/j.jpor.2017.08.010
  5. Jepsen S, Schwarz F, Cordaro L, Derks J, Hammerle CH, Heitz-Mayfield LJ, et al. Regeneration of alveolar ridge defects. Consensus report of group 4 of the 15th European Workshop on Periodontology on Bone Regeneration. J Clin Periodontol 2019;46 Suppl 21:277-86. https://doi.org/10.1111/jcpe.13121
  6. Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol 2019;46 Suppl 21:92-102. https://doi.org/10.1111/jcpe.13058
  7. Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Injury 2007;38 Suppl 1:S33-7. https://doi.org/10.1016/j.injury.2007.02.008
  8. Peres MF, Ribeiro ED, Casarin RC, Ruiz KG, Junior FH, Sallum EA, et al. Hydroxyapatite/β-tricalcium phosphate and enamel matrix derivative for treatment of proximal class II furcation defects: a randomized clinical trial. J Clin Periodontol 2013;40:252-9. https://doi.org/10.1111/jcpe.12054
  9. Fukuba S, Okada M, Nohara K, Iwata T. Alloplastic bone substitutes for periodontal and bone regeneration in dentistry: current status and prospects. Materials (Basel) 2021;14:1096.
  10. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003;14:195-200. https://doi.org/10.1023/A:1022842404495
  11. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 2003;14:201-9. https://doi.org/10.1023/A:1022872421333
  12. Lee JT, Lee Y, Lee D, Choi Y, Park J, Kim S. Evaluation of the mechanical properties and clinical efficacy of biphasic calcium phosphate-added collagen membrane in ridge preservation. J Periodontal Implant Sci 2020;50:238-50. https://doi.org/10.5051/jpis.2001080054
  13. Tumedei M, Savadori P, Del Fabbro M. Synthetic blocks for bone regeneration: a systematic review and meta-analysis. Int J Mol Sci 2019;20:4221.
  14. Dahlin C, Obrecht M, Dard M, Donos N. Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity. Clin Oral Implants Res 2015;26:814-22. https://doi.org/10.1111/clr.12361
  15. Morris K. Revising the Declaration of Helsinki. Lancet 2013;381:1889-90. https://doi.org/10.1016/S0140-6736(13)60951-4
  16. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. J Pharmacol Pharmacother 2010;1:100-7. https://doi.org/10.4103/0976-500X.72352
  17. Merli M, Moscatelli M, Mariotti G, Pagliaro U, Raffaelli E, Nieri M. Comparing membranes and bone substitutes in a one-stage procedure for horizontal bone augmentation. A double-blind randomised controlled trial. Eur J Oral Implantology 2015;8:271-81.
  18. Merli M, Moscatelli M, Mariotti G, Pagliaro U, Raffaelli E, Nieri M. Comparing membranes and bone substitutes in a one-stage procedure for horizontal bone augmentation. Three-year post-loading results of a double-blind randomised controlled trial. Eur J Oral Implantology 2018;11:441-52.
  19. Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res 1997;8:117-24. https://doi.org/10.1034/j.1600-0501.1997.080206.x
  20. Orsini G, Scarano A, Degidi M, Caputi S, Iezzi G, Piattelli A. Histological and ultrastructural evaluation of bone around Bio-Oss particles in sinus augmentation. Oral Dis 2007;13:586-93. https://doi.org/10.1111/j.1601-0825.2006.01343.x
  21. Lan Levengood SK, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, et al. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 2010;31:3552-63. https://doi.org/10.1016/j.biomaterials.2010.01.052
  22. Rh Owen G, Dard M, Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res B Appl Biomater 2018;106:2493-512. https://doi.org/10.1002/jbm.b.34049
  23. Yuan H, van Blitterswijk CA, de Groot K, de Bruijn JD. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng 2006;12:1607-15. https://doi.org/10.1089/ten.2006.12.1607
  24. Tanaka K, Botticelli D, Canullo L, Baba S, Xavier SP. New bone ingrowth into β-TCP/HA graft activated with argon plasma: a histomorphometric study on sinus lifting in rabbits. Int J Implant Dent 2020;6:36.
  25. Habibovic P, Kruyt MC, Juhl MV, Clyens S, Martinetti R, Dolcini L, et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res 2008;26:1363-70. https://doi.org/10.1002/jor.20648
  26. Garrido CA, Lobo SE, Turibio FM, Legeros RZ. Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes. Int J Biomater 2011;2011:129727.
  27. Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials 2010;31:1465-85. https://doi.org/10.1016/j.biomaterials.2009.11.050
  28. Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater 2017;53:1-12. https://doi.org/10.1016/j.actbio.2017.01.076
  29. Jung EH, Jeong SN, Lee JH. Augmentation stability and early wound healing outcomes of guided bone regeneration in peri-implant dehiscence defects with L- and I-shaped soft block bone substitutes: a clinical and radiographic study. Clin Oral Implants Res 2021;32:1308-17. https://doi.org/10.1111/clr.13830
  30. Lee JH, Jung EH, Jeong SN. Augmentation stability of guided bone regeneration for peri-implant dehiscence defects with l-shaped porcine-derived block bone substitute. Materials (Basel) 2021;14:6580.
  31. Arunjaroensuk S, Panmekiate S, Pimkhaokham A. The stability of augmented bone between two different membranes used for guided bone regeneration simultaneous with dental implant placement in the esthetic zone. Int J Oral Maxillofac Implants 2018;33:206-16. https://doi.org/10.11607/jomi.5492
  32. Lee JH, Jung EH, Jeong SN. Profilometric, volumetric, and esthetic analysis of guided bone regeneration with L-shaped collagenated bone substitute and connective tissue graft in the maxillary esthetic zone: a case series with 1-year observational study. Clin Implant Dent Relat Res 2022;24:655-63. https://doi.org/10.1111/cid.13116
  33. Naenni N, Schneider D, Jung RE, Husler J, Hammerle CH, Thoma DS. Randomized clinical study assessing two membranes for guided bone regeneration of peri-implant bone defects: clinical and histological outcomes at 6 months. Clin Oral Implants Res 2017;28:1309-17. https://doi.org/10.1111/clr.12977
  34. Jung RE, Fenner N, Hammerle CH, Zitzmann NU. Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12-14 years. Clin Oral Implants Res 2013;24:1065-73. https://doi.org/10.1111/j.1600-0501.2012.02522.x
  35. Lutz R, Neukam FW, Simion M, Schmitt CM. Long-term outcomes of bone augmentation on soft and hard-tissue stability: a systematic review. Clin Oral Implants Res 2015;26 Suppl 11:103-22. https://doi.org/10.1111/clr.12635