DOI QR코드

DOI QR Code

Heel Trajectory Analysis Method of Walking using a Wearable Sensor

착용형 센서를 이용한 보행 뒤꿈치 궤적 분석 방법

  • 김희찬 (상명대학교 전자정보시스템공학과) ;
  • 최현진 (상명대학교 휴먼지능로봇공학과)
  • Received : 2023.06.27
  • Accepted : 2023.08.17
  • Published : 2023.08.31

Abstract

Walking is a periodic motion that contains specific phases and is a basic movement method for humans. Through gait analysis, various musculoskeletal health conditions can be identified. In this study, we propose a calf wearable sensor system that can perform gait analysis without space limitations. Using a ToF(: Time-of-Flight) sensor that measures distance and an IMU(: Inertial Measurement Unit) sensor that measures inclination the heel trajectory of walking was derived by proposed method. In case of abnormal gait with risk of fall, gait is evaluated by analyzing the change pattern of the heel trajectory.

보행은 특정 단계를 반복하는 주기적인 동작으로 사람의 기본 이동방법이다. 보행 분석을 통해 여러 가지 근골격계의 건강상태를 판별할 수 있다. 본 연구에서는 공간의 제약 없이 보행 분석을 할 수 있는 착용형 센서 시스템을 제안한다. 거리를 측정하는 ToF(: Time-of-Flight) 센서와 기울기를 측정하는 IMU(: Inertial Measurement Unit) 센서로 보행 중의 뒤꿈치 궤적을 도출한다. 낙상의 위험이 있는 이상보행을 할 때의 뒤꿈치 궤적의 변화 양상을 분석하여 보행을 평가한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No. 2021R1F1A1062499).

References

  1. S. Mihradi, T. Dirgantara, and A. I. Mahyuddin, "Development of an optical motion-capture system for 3D gait analysis," IEEE 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, Bandung, Indonesia, 2011, pp. 391-394.
  2. A. Pfister, A. M. West, S. Bronner, and J. A. Noah, "Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis," Journal of medical engineering & technology, vol. 38, no. 5, 2014, pp. 274-280.
  3. B. Fan, Q. Li, T. Tan, P. Kang, and P. B. Shull, "Effects of IMU Sensor-to-Segment Misalignment and Orientation Error on 3-D Knee Joint Angle Estimation," IEEE Sensors Journal, vol. 22, no. 3, 2022, pp. 2543-2552. https://doi.org/10.1109/JSEN.2021.3137305
  4. T. McGrath and L. Stirling, "Body-Worn IMU-Based Human Hip and Knee Kinematics Estimation during Treadmill Walking," Sensors vol. 22, no. 7, 2022, pp .2544.
  5. M. Al Borno, J. O'Day, V. Ibarra, J. Dunne, A. Seth, A. C. Habib, C. Ong, J. Hicks, S. Uhlrich, S. Delp, "OpenSense: An open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations," J. of Neuroengineering and Rehabilitation. vol. 19, no. 1, 2022, pp. 1-11. https://doi.org/10.1186/s12984-021-00978-1
  6. J. Meena. S. Choi, T. Khanh, H. Shin, J. Choi, J. Joo, and J. Kim, "Highly stretchable and robust textile-based capacitive mechanical sensor for human motion detection," Applied Surface Science, vol. 613, 2023, pp. 155961.
  7. J. Seong and H. Choi, "A Wearable Glove System for Rehabilitation of Finger Injured Patients", J. of the Korea Institute of Electronic Communication Sciences. vol. 18, no. 2, 2023, pp. 379-385.
  8. J. Park, B. Lee, S. Park, and C. Kim, "Estimation of Stride Length, Foot Clearance, and Foot Progression Angle Using UWB Sensors," Applied Sciences, vol. 13, no. 8, 2023, pp. 4801.
  9. S. Jacob, G. Fernie, and A. R. Fekr, "Design of a Novel Wearable System for Foot Clearance Estimation," Sensors, vol. 21, no. 23, 2021, pp. 7891.
  10. J. Seo, "Sleep Monitoring by Contactless in daily life based on Mobile Sensing," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 3, 2022, pp. 491-498.
  11. S. Hong, "Development of smart healthcare contents using virtual reality experiential devices," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 4, 2022, pp. 739-744.