DOI QR코드

DOI QR Code

Morphological and Phylogenetic Analysis of a New Record of Paraconiothyrium kelleni from Soil in Korea

  • Mukesh Kumar Yadav (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Kallol Das (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jung-Joo Ryu (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seong-Keun Lim (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jin-Sil Choi (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Seung-Yeol Lee (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Hee-Young Jung (College of Agriculture and Life Sciences, Kyungpook National University)
  • Received : 2023.05.11
  • Accepted : 2023.06.29
  • Published : 2023.06.30

Abstract

A fungal strain designated KNUF-21-66Q1 was isolated from soil in Chungcheongbuk Province, Korea. Moderate growth of colonies was observed on potato dextrose agar, oatmeal agar (OA), malt extract agar, and cornmeal agar media at 25℃, and the detailed morphology was examined on OA medium. The colonies on OA medium were flat, had entire margin, hyaline, and yellow concentric rings in 3-4 weeks. Conidiomata were pycnidial, solitary or clustered, globose to subglobose, black-brown, and 300-500 ㎛ in diameter. Conidiogenous cells were smooth, hyaline, globose to ampulliform, and 6.0-9.0×3.0-6.0 ㎛ in size (n=15). Conidia were hyaline to pale brown, slightly golden, obovoid to slightly ellipsoidal, smooth, guttulate, and 3.0-4.7×2.1-3.3 ㎛ in size (n=100). The strain was confirmed based on phylogenetic analysis using internal transcribed spacer regions, the partial 28S rDNA of large subunit, and β-tubulin gene sequences. The morphological observations and phylogenetic analysis revealed that the strain KNUF-21-66Q1 was similar to the previously described Paraconiothyrium kelleni. To our knowledge, this is the first report of P. kelleni in Korea.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources, funded by the Ministry of Environment of the Republic of Korea (NIBR202304104).

References

  1. Verkley GJM, da Silva M, Wicklow DT, Crous PW. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud Mycol 2004;50:323-35.
  2. Ariyawansa HA, Tsai I, Thambugala KM, Chuang WY, Lin SR, Hozzein WN, Cheewangkoon R. Species diversity of Pleosporalean taxa associated with Camellia sinensis (L.) Kuntze in Taiwan. Sci Rep 2020;10:1-20. https://doi.org/10.1038/s41598-019-56847-4
  3. Verkley GJM, Dukik K, Renfur R, Goker M, Stielow JB. Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota). Persoonia 2014;32:25-51. https://doi.org/10.3767/003158514X679191
  4. Wijayawardene NN, Hyde KD, Dai DQ, Sanchez-Garcia M, Goto BT, Saxena RK, Erdogdu M, Selcuk F, Rajeshkumar KC, Aptroot A, et al. Outline of fungi and fungus-like taxa -2021. Mycosphere 2022;13:53-453. https://doi.org/10.5943/mycosphere/13/1/2
  5. Wang J, Shao S, Liu C, Song Z, Liu S, Wu S. The genus Paraconiothyrium: species concepts, biological functions, and secondary metabolites. Crit Rev Microbiol 2021;47:781-810. https://doi.org/10.1080/1040841X.2021.1933898
  6. Damm U, Verkley GJM, Crous PW, Fourie PH, Riccioni L. Novel Paraconiothyrium species on stone fruit trees and other woody hosts. Persoonia 2008;20:9-17. https://doi.org/10.3767/003158508X286842
  7. Garyali S, Kumar A, Reddy MS. Diversity and antimitotic activity of taxol-producing endophytic fungi isolated from Himalayan yew. Ann Microbiol 2014;64:1413-22. https://doi.org/10.1007/s13213-013-0786-7
  8. Das K, Lee SY, Jung HY. Molecular and morphological characterization of two novel species collected from soil in Korea. Mycobiology 2020;48:9-19. https://doi.org/10.1080/12298093.2019.1695717
  9. Tan YP, Bishop-Hurley SL, Shivas RG, Cowan DA, Maggs-Kolling G, Maharachchikumbura SSN, Pinruan U, Bransgrove KL, De la Pena-Lastra S, Larsson E, et al. Fungal planet description sheets: 1436-1477. Persoonia 2022;49:261-350. https://doi.org/10.3767/persoonia.2022.49.08
  10. Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, et al. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers 2021;111:1-335. https://doi.org/10.1007/s13225-021-00489-3
  11. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  12. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-22.
  13. Rehner SA, Samuels GJ. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 1994;98:625-34. https://doi.org/10.1016/S0953-7562(09)80409-7
  14. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990;172:4238-46. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  15. O'Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 1977;7:103-16. https://doi.org/10.1006/mpev.1996.0376
  16. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323-30. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20. https://doi.org/10.1007/BF01731581
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  19. Cloete M, Fourie PH, Damm U, Crous PW, Mostert L. Fungi associated with die-back symptoms of apple and pear trees, a possible inoculum source of grapevine trunk disease pathogens. Phytopathol Mediterr 2011;50:176-90.
  20. Lorenzini M, Cappello MS, Logrieco A, Zapparoli G. Polymorphism and phylogenetic species delimitation in flamentous fungi from predominant mycobiota in withered grapes. Int J Food Microbiol 2016;238:56-62. https://doi.org/10.1016/j.ijfoodmicro.2016.08.039
  21. Guarnaccia V, Martino I, Brondino L, Gullino ML. Paraconiothyrium fuckelii, Diaporthe eres and Neocosmospora parceramosa causing cane blight of red raspberry in Northern Italy. J Plant Pathol 2022;104:683-98. https://doi.org/10.1007/s42161-022-01068-4
  22. Gordon RA, Sutton DA, Thompson EH, Shrikanth V, Verkley GJ, Stielow JB, Mays R, Oleske D, Morrison LK, Lapolla WJ, et al. Cutaneous Phaeohyphomycosis caused by Paraconiothyrium cyclothyrioides. J Clin Microbiol 2012;50:3795-8. https://doi.org/10.1128/JCM.01943-12
  23. Paul NC, Lee HB. First record of endophytic Paraconiothyrium brasiliense isolated from Chinese maple leaves in Korea. Kor J Mycol 2014;42:349-52. https://doi.org/10.4489/KJM.2014.42.4.349
  24. Ahn GR, Choi MA, Kim JE, Seo EJ, Kim YJ, Kim SH. A report of eighteen unrecorded fungal species in Korea. Kor J Mycol 2017;45:292-303.
  25. Goh J, Mun HY, Oh Y, Chung N. Four species of Montagnulaceae unrecorded in Korea and isolated from plant litter in freshwater. Kor J Mycol 2016;44:263-70.
  26. Arredondo-Santoyo M, Herrera-Camacho J, Vazquez-Garciduenas M, Vazquez-Marrufo G. Corn stover induces extracellular laccase activity in Didymosphaeria sp. (syn. Paraconiothyrium sp.) and exhibits increased in vitro ruminal digestibility when treated with this fungal species. Folia Microbiol 2020;65:849-61. https://doi.org/10.1007/s12223-020-00795-4
  27. Somjaipeng S, Medina A, Kwasna H, Ordaz Ortiz J, Magan N. Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biol 2015;119:1022-31. https://doi.org/10.1016/j.funbio.2015.07.007
  28. Kusari S, Singh S, Jayabaskaran C. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol 2014;32:304-11. https://doi.org/10.1016/j.tibtech.2014.03.011