DOI QR코드

DOI QR Code

SEARCH FOR TECHNOSIGNATURE

기술문명징후 탐색

  • Sungwook E. Hong (Korea Astronomy and Space Science Institute) ;
  • Bong Won Sohn (Korea Astronomy and Space Science Institute) ;
  • Taehyun Jung (Korea Astronomy and Space Science Institute) ;
  • Min-Su Shin (Korea Astronomy and Space Science Institute) ;
  • Hyunwoo Kang (Korea Astronomy and Space Science Institute) ;
  • Minsun Kim (Korea Astronomy and Space Science Institute)
  • Received : 2022.12.22
  • Accepted : 2023.04.25
  • Published : 2023.08.31

Abstract

Technosignature, previously known as SETI(search for extraterrestrial intelligence), is the scientific evidence of past or present extraterrestrial civilizations. Since NRAO's Project Ozma was performed in 1960, most of the noticeable technosignature searches have been done by radio telescopes, hoping to find strong and narrow bandwidth signals that cannot be explained by known natural processes. Recently, the Breakthrough Listen project has opened a new opportunity for technosignature by utilizing both optical telescopes, radio telescopes, and next-generation radio telescope arrays. In this review, mainly based on NASA Technosignatures Workshop (2018), we review the current trends of technosignature surveys, as well as other possible methods for detecting technosignature. Also, we suggest what the Korean community could contribute the technosignature research, including the new SETI project with Korea VLBI Network (KVN).

Keywords

Acknowledgement

우주생명현상 탐색 연구를 함께 수행하고 있는 동료들(LiCE team: 이충욱, 정선주, Thiem Hoang)과 익명의 심사위원께 감사드립니다. LiCE(Life in Cosmic Exploration) 세미나 시리즈를 통해, 본 연구에 유용한 리뷰와 의견을 제공한 Michael Garret 교수, Chris Phillips 교수께 감사드립니다. 본 연구는 정부(과학기술정보통신부)의 재원으로 한국천문연구원 주요사업(No. 2021184005, 우주생명현상탐색, No. 2022186903, 우주 거대구조를 이용한 암흑우주연구, No. 2023184007, 고밀도 천체의 물질 방출 및 자기장 연구) 및 기타사업 (No.2022E83090, 우주생명현상 탐색 기획연구)과 수탁사업(NRF-2020K1A3A1A78114060, 한-EU 미래 AGN VLBI 연구기반 구축(H2020 RadioNet))의 지원을 받아 수행되었습니다.

References

  1. Backus, P. R. & Project Phoenix Team, 2002, Project Phoenix: SETI Observations from 1200 to 1750 MHz with the Upgraded Arecibo Telescope, Single-Dish Radio Astronomy: Techniques and Applications, 278, 525
  2. Bialy, S. & Loeb, A., 2018, How Do Disks and Planetary Systems in High-mass Open Clusters Differ from Those around Field Stars?, ApJ, 868, 1
  3. Beichman, C., Lawson, P., Lay, O., et al,. 2006, Status of the terrestrial planet finder interferometer (TPF-I), Proc. SPIE, 6268, 62680S
  4. Bodman, E., Wright, J., Boyajian, T., et al., 2018, The Variable Wavelength Dependence of the Dipping event of KIC 8462852. arXiv:1806.08842
  5. Borra, E. F. & Trottier, E., 2016, Discovery of Peculiar Periodic Spectral Modulations in a Small Fraction of Solartype Stars, PASP, 128, 114201
  6. Bowyer, S., Werthimer, D., Donnelly, C., Lampton, M., Herrick, W., & Soller, J., 1993, The SERENDIP SETI Project, ASP Conference Series, Vol. 47, 269
  7. Bowyer, S., Lampton, M., Korpela, E., et al., 2016, The SERENDIP III 70 cm Search for Extraterrestrial Intelligence, arXiv:1607.00440
  8. Boyajian, T. S., LaCourse, D. M., Rappaport, S. A., et al., 2016, Planet Hunters IX. KIC 8462852 - where's the flux? MNRAS, 457, 3988
  9. Bracewell, R. N., 1960, Communications from Superior Galactic Communities, Natur, 186, 670
  10. Braun, R., Bourke, T., Green, J. W. & Wagg, J., 2014, SKA1 Science Priority Outcomes
  11. Catling, D. C., Krissansen-Totton, J., Kiang, N. Y., et al., 2018, Exoplanet Biosignatures: A Framework for Their Assessment. Astrobiology, 18, 709
  12. Clery, D., 2020, Listen Up. Science, Feature, 369, 6509, 1288- 1291 https://doi.org/10.1126/science.369.6509.1288
  13. Cobb, J., Donnelly, C., Bowyer, S., Werthimer, D., & Lampton, M., 1997, The SERENDIP IV interference rejection and signal detection system. Proceedings of the 5th international conference on bioastronomy, IAU Colloquium No. 161, 677
  14. Cobb, J., Lebofsky, M., Werthimer, D., Bowyer, S., Lampton, M., 2000, SERENDIP IV: Data Acquisition, Reduction, and Analysis, ASP Conference Series, 213, 485
  15. Cocconi, G. & Morrison, P., 1959, Searching for Interstellar Communications, Natur, 184, 844
  16. Cockell, C. S., Leger, A., Fridlund, M., et al., 2009, DarwinA Mission to Detect and Search for Life on Extrasolar Planets. Astrobiology, 9, 1
  17. Conroy, C. & van Dokkum, P. G., 2016, Pixel Color Magnitude Diagrams for Semi-resolved Stellar Populations: The Star Formation History of Regions within the Disk and Bulge of M31, ApJ, 827, 9
  18. Cooray, A. R. & Origins Space Telescope Study Team, 2017, Origins Space Telescope. AAS, 229, 405.01
  19. Deller, A. T., Tingay, S. J., Bailes, M., et al., 2007, DiFX: A Software Correlator for Very Long Baseline Interferometry Using Multiprocessor Computing Environments. PASP, 119, 318
  20. DeMarines, J., Haqq-Misra, J., Isaacson, H., et al., 2019, Observing the Earth as a Communicating Exoplanet, BAAS, 51, 558
  21. Des Marais, D. J., Allamandola, L. J., Benner, S. A., Boss, A. P., Deamer, D., Falkowski, P. G., Farmer, J. D., et al., 2003, The NASA Astrobiology Roadmap, Astrobiology, 3, 219
  22. Drake, F., 1961, Project Ozma. Physics Today, 14, 40
  23. Drake, F., 2011, The search for extra-terrestrial intelligence. Philosophical Transactions of the Royal Society of London Series A, 369, 633
  24. Dyson, F. J., 1960, Search for Artificial Stellar Sources of Infrared Radiation, Science, 131, 1667
  25. Frank, A., Kleidon, A., & Alberti, M., 2017, Earth as a Hybrid Planet - The Anthropocene in an Evolutionary Astrobiological Context. Anthropocene, 19, 13
  26. Franz, N., Croft, S., Siemion, A. P. V., Traas, R. Brzycki, B., Gajjar, V., Isaacson, H., Lebofsky, M., MacMahon, D. H. E., Price, D. C., Sheikh, S. Z., DeMarines, J., Drew, J., & Worden, S. P., 2022, The Breakthrough Listen Search for Intelligent Life: Technosignature Search of Transiting TESS Targets of Interest, AJ, 163, 104
  27. Fujii, Y., Angerhausen, D., Deitrick, R., et al., 2018, Exoplanet Biosignatures: Observational Prospects, Astrobiology, 18, 739
  28. Fulton, B. J., Weiss, L. M., Sinukoff, E., et al., 2015, Three Super-Earths Orbiting HD 7924, ApJ, 805, 175
  29. Gaidos, E., 2017, Transit detection of a 'starshade' at the inner lagrange point of an exoplanet, MNRAS, 469, 4455
  30. Gajjar, V., Siemion, A. P. V., Price, D. C., et al. 2018, Highest Frequency Detection of FRB 121102 at 4-8 GHz Using the Breakthrough Listen Digital Backend at the Green Bank Telescope., ApJ, 863, 2
  31. Garber, S. J., 1999, Searching for Good Science - The Cancellation of NASA's SETI Program. Journal of the British Interplanetary Society, 52, 3
  32. Garrett, M. A., 2018, SETI surveys of the nearby and distant universe employing wide-field radio interferometry techniques. arXiv:1810.07235
  33. Giles, D. & Walkowicz, L., 2019, Systematic serendipity: a test of unsupervised machine learning as a method for anomaly detection. MNRAS, 484, 834
  34. Griffith, R. L., Wright, J. T., Maldonado, J., et al., 2015, The G Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. III. The Reddest Extended Sources in WISE, ApJS, 217, 25
  35. Harp, G. R., Richards, J., Tarter, J. C., et al., 2016, SETI Observations of Exoplanets with the Allen Telescope Array, AJ, 152, 181
  36. Harp, G. R., Richards, J., Jenniskens, P., Shostak, S., & Tarter, J. C., 2019, Radio SETI observations of the interstellar object 'OUMUAMUA. Acta Astronautica, 155, 51
  37. Isaacson, H., Siemion, A. P. V., Marcy, G. W., et al., 2017, The Breakthrough Listen Search for Intelligent Life: Target Selection of Nearby Stars and Galaxies. PASP, 129, 054501
  38. Isaacson, H., Siemion, A. P. V., Marcy, G. W., et al., 2019, The Breakthrough Listen Search for Intelligent Life: No Evidence of Claimed Periodic Spectral Modulations in High-resolution Optical Spectra of Nearby Stars. PASP, 131, 014201
  39. Kardashev, N. S., 1964, Transmission of Information by Extraterrestrial Civilizations. SvA, 8, 217
  40. Keimpema, A., Kettenis, M. M., Pogrebenko, S. V., et al., 2015, The SFXC software correlator for very long baseline interferometry: algorithms and implementation. Experimental Astronomy, 39, 259.
  41. Kenworthy, M. A. & Mamajek, E. E., 2015, Modeling Giant Extrasolar Ring Systems in Eclipse and the Case of J1407b: Sculpting by Exomoons? ApJ, 800, 126
  42. Kipping, D. M., Bakos, G. A., Buchhave, L., et al., 2012, The Hunt for Exomoons with Kepler (HEK). I. Description of a New Observational project, ApJ, 750, 115
  43. Korpela, E. J., 2012, SETI@home, BOINC, and Volunteer Distributed Computing Annual Review of Earth and Planetary Sciences, 40, 69
  44. Kraus, J., 1979, We Wait and Wonder, Cosmic Search, 1, 31
  45. Kuhn, J. R. & Berdyugina, S. V., 2015, Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus, International Journal of Astrobiology, 14, 401
  46. Kwon, et al., in preparation
  47. Lacki, B. C., 2019, Sunscreen: Photometric Signatures of Galaxies Partially Cloaked in Dyson Spheres, PASP, 131, 024102
  48. Lacki, B. C., Brzycki, B., Croft, S., Czech, D., DeBoer, D., DeMarines, J., Gajjar, V., Isaacson, H., Lebofsky, M., MacMahon, D. H. E., Price, D. C., Sheikh, S. Z., Siemion, A. P. V., Drew, J., & Worden, S. P., 2021, One of Everything: The Breakthrough Listen Exotica Catalog, ApJS, 257, 42
  49. Lipman, D., Isaacson, H., Siemion, A. P. V., et al., 2019, The Breakthrough Listen Search for Intelligent Life: Searching Boyajian's Star for Laser Line Emission, PASP, 131, 034202
  50. Maddox, N., Jarvis, M. J., & Oosterloo, T. A., 2016, Optimizing commensality of radio continuum and spectral line observations in the era of the SKA, MNRAS, 460, 3419
  51. Mann, A. W., Gaidos, E., Mace, G. N., et al., 2016, Zodiacal Exoplanets in Time (ZEIT). I. A Neptune-sized Planet Orbiting an M4.5 Dwarf in the Hyades Star Cluster, ApJ, 818, 46
  52. Mardini, M. K., Li, H., Placco, V. M., et al., 2019a, Metalpoor Stars Observed with the Automated Planet Finder Telescope. I. Discovery of Five Carbon-enhanced Metalpoor Stars from LAMOST, ApJ, 875, 89
  53. Mardini, M. K., Placco, V. M., Taani, A., et al., 2019b, Metal-poor Stars Observed with the Automated Planet Finder Telescope. II. Chemodynamical Analysis of Six Low-metallicity Stars in the Halo System of the Milky Way, ApJ, 882, 27
  54. Margot, J. -L., Greenberg, A. H., Pinchuk, P., et al., 2018, A Search for Technosignatures from 14 Planetary Systems in the Kepler Field with the Green Bank Telescope at 1.15-1.73 GHz, AJ, 155, 209
  55. Margot, J. -L., Croft, S., Lazio, J., et al., 2019, The radio search for technosignatures in the decade 2020-2030, BAAS, 51, 298
  56. McKinley, B., Briggs, F., Kaplan, D. L., et al., 2013, Lowfrequency Observations of the Moon with the Murchison Widefield Array, AJ, 145, 23
  57. Montet, B. T. & Simon, J. D., 2016, KIC 8462852 Faded throughout the Kepler Mission, ApJL, 830, L39
  58. NASA Technosignatures Workshop Participants, 2018, NASA and the Search for Technosignatures: A Report from the NASA Technosignatures Workshop, arXiv:1812.08681
  59. Palle, E., 2010, Earthshine observations of an inhabited planet, EAS Publications Series, 41, 505
  60. Park, C., Jaffe, D. T., Yuk, I. -S., et al., 2014, Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer), Proc. SPIE, 9147, 91471D
  61. Perez, K. I., et al., 2022, Breakthrough Listen Search for the WOW! Signal. Res, Notes AAS, 6, 197
  62. Pinchuk, P., Margot, J. -L., Greenberg, A. H., et al., 2019, A Search for Technosignatures from TRAPPIST-1, LHS 1140, and 10 Planetary Systems in the Kepler Field with the Green Bank Telescope at 1.15-1.73 GHz, AJ, 157, 122
  63. Price, D. C., Enriquez, J. E., Brzycki, B., et al., 2020, The Breakthrough Listen Search for Intelligent Life: Observations of 1327 Nearby Stars Over 1.10-3.45 GHz, AJ, 159, 86
  64. Rein, H., Fujii, Y., & Spiegel, D. S., 2014, Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets, Proceedings of the National Academy of Science, 111, 6871
  65. Ribas, I., Bolmont, E., Selsis, F., et al., 2016, The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present, A&A, 596, A111
  66. Sandford, E. & Kipping, D., 2019, Shadow Imaging of Transiting Objects, AJ, 157, 42
  67. Schwartz, R. N. & Townes, C. H., 1961, Interstellar and Interplanetary Communication by Optical Masers, Natur, 190, 205
  68. Sheikh, S. Z., Smith, S., Price, D. C., et al., 2021a, Analysis of the Breakthrough Listen signal of interest blc1 with a technosignature verification framework, Nature Astronomy, 5, 1153
  69. Sheikh, S. Z., Smith, S., Price, D., et al., 2021b, No Redetections of blc1 in 39 hr of Reobservation Campaigns of Proxima Centauri, Research Notes of the American Astronomical Society, 5, 248
  70. Smith, S., Price, D. C., Sheikh, S. Z., et al., 2021, A radio technosignature search towards Proxima Centauri resulting in a signal of interest, Nature Astronomy, 5, 1148
  71. Socas-Navarro, H., 2018, Possible Photometric Signatures of Moderately Advanced Civilizations: The Clarke Exobelt, ApJ, 855, 110
  72. Sullivan, W. T. & Knowles, S. H., 1985, The near-space unwanted RF environment as observed using VHF lunar reflections, IEEE Transactions on Electromagnetic Compatibility, 27, 115
  73. Tao, Z. -Z., Zhao, H. -C., Zhang, T. -J., et al., 2022, Sensitive Multibeam Targeted SETI Observations toward 33 Exoplanet Systems with FAST, AJ, 164, 160
  74. Tarter, J., 2001, The Search for Extraterrestrial Intelligence (SETI), ARA&A, 39, 511
  75. Tarter, J. C., Agrawal, A., Ackermann, R., et al., 2010, SETI turns 50: five decades of progress in the search for extraterrestrial intelligence, Proc. SPIE, 7819, 781902
  76. Turbet, M., Leconte, J., Selsis, F., et al., 2016, The habitability of Proxima Centauri b. II. Possible climates and observability, A&A, 596, A112
  77. Traas, R., Croft, S., Gajjar, V., et al., 2021, The Breakthrough Listen Search for Intelligent Life: Searching for Technosignatures in Observations of TESS Targets of Interest, AJ, 161, 286
  78. Vogt, S. S., Radovan, M., Kibrick, R., et al., 2014, APF-The Lick Observatory Automated Planet Finder, PASP, 126, 359
  79. Vogt, S. S., Burt, J., Meschiari, S., et al., 2015, Six Planets Orbiting HD 219134, ApJ, 814, 12
  80. Werthimer, D., Tarter, J., & Bowyer, S., 1985, The Serendip II design, IAUS, 112, 421
  81. Werthimer, D., Bowyer, S., Cobb, J., et al., 2000, The Serendip IV Arecibo Sky Survey, Bioastronomy 99, 479
  82. Williams, P. K. G., Bower, G. C., & Allen Telescope Array Team, 2010, The ATA Galactic Center Survey: Slow Radio Transients, AAS Meeting No. 215, Bulletin of the American Astronomical Society, Vol. 42, 223
  83. Worden, S. P., Drew, J., Siemion, A., et al., 2017, Breakthrough Listen - A new search for life in the universe, AcAau, 139, 98
  84. Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al,. 2010, The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance, AJ, 140, 1868
  85. Wright, J. T., Griffith, R. L., Sigurdsson, S., et al., 2014, The G Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. II. Framework, Strategy, and First Result, ApJ, 792, 27
  86. Wright, J. T. & Sigurdsson, S., 2016, Families of Plausible Solutions to the Puzzle of Boyajian's Star, ApJL, 829, L3
  87. Wright, J. T., Cartier, K. M. S., Zhao, M., et al., 2016, The Search for Extraterrestrial Civilizations with Large Energy Supplies. IV. The Signatures and Information Content of Transiting Megastructures, ApJ, 816, 17
  88. Wright, J. T., Kanodia, S., & Lubar, E., 2018, How Much SETI Has Been Done? Finding Needles in the ndimensional Cosmic Haystack, AJ, 156, 260
  89. Wright, J. T. & Kipping, D., 2019, Technosignatures in Transit, BAAS, 51, 343
  90. Wright, J., Zackrisson, E., & Lisse, C., 2019, Technosignatures in the Thermal Infrared, BAAS, 51, 366
  91. Wyatt, M. C., Clarke, C. J., & Greaves, J. S., 2007, Origin of the metallicity dependence of exoplanet host stars in the protoplanetary disc mass distribution, MNRAS, 380, 1737
  92. Wyatt, M. C., 2008, Evolution of debris disks, ARA&A, 46, 339