DOI QR코드

DOI QR Code

EXOPLANETS AND HABITABILITY

외계행성과 생명가능성

  • Sungwook E. Hong (Korea Astronomy and Space Science Institute) ;
  • Ryun-Young Kwon (Korea Astronomy and Space Science Institute) ;
  • Yunjong Kim (Korea Astronomy and Space Science Institute) ;
  • Hyunwoo Kang (Korea Astronomy and Space Science Institute) ;
  • Minsun Kim (Korea Astronomy and Space Science Institute)
  • Received : 2022.12.22
  • Accepted : 2023.02.23
  • Published : 2023.08.31

Abstract

More than 5,000 exoplanets have been detected nowadays. One of the key motivations of exoplanet detection is to understand what physical/chemical conditions of exoplanets are suitable for harboring extraterrestrial life. Such conditions are called "habitability," and most modern studies assume the existence of liquid water as its key factor. In this paper, we review the current status of exoplanet and habitability studies, as well as some future (habitable) exoplanet survey plans, mostly from National Academies of Sciences, Engineering, and Medicine (2018, 2021). Also, we suggest several research items that the Korean astronomy and space science community could contribute to habitability.

Keywords

Acknowledgement

우주생명현상 탐색 연구를 함께 수행하고 있는 동료들(LiCE team: 손봉원, 신민수, 이충욱, 정선주, 정태현, Thiem Hoang)과 익명의 심사위원께 감사드립니다. LiCE(Life in Cosmic Exploration) 세미나 시리즈를 통해, 본 연구에 유용한 리뷰와 의견을 제공한 황재찬 교수, Michael Gowanlock 교수, Brad K. Gibson 교수, Manasvi Lingam 교수께 감사드립니다. 본 연구는 정부(과학기술정보통신부)의 재원으로 한국천문연구원 주요사업 및 기타사업의 지원을 받아 수행되었습니다(No. 2022E83090, 우주생명현상 탐색 기획연구, No. 2021184005, 우주생명 현상탐색, No. 2022186903, 우주거대구조를 이용한 암흑우주연구, No. 2023184007, 고밀도 천체의 물질 방출 및 자기장 연구).

References

  1. Ahrer, E. -M., Stevenson, K. B., Mansfield, M., et al., 2022, Release Science of the exoplanet WASP-39b with JWST NIRCam, arXiv:2211.10489
  2. Airapetian, V. S. & Usmanov, A. V., 2016, Reconstructing the Solar Wind from Its Early History to Current Epoch, ApJL, 817, L24.
  3. Airapetian, V. S., Adibekyan, V., Ansdell, M., et al., 2018, Exploring Extreme Space Weather Factors of Exoplanetary Habitability, arXiv:1803.03751
  4. Akeson, R. L., Chen, X., Ciardi, D., et al., 2013, The NASA Exoplanet Archive: Data and Tools for Exoplanet Research, PASP, 125, 989.
  5. Alderson, L., Wakeford, H. R., Alam, M. K., et al., 2022, Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H, arXiv:2211.10488
  6. Barnes, L. A., Elahi, P. J., Salcido, J., et al., 2018, Galaxy formation efficiency and the multiverse explanation of the cosmological constant with EAGLE simulations, MNRAS, 477, 3727
  7. Beauge, C., Ferraz-Mello, S., & Michtchenko, T. A., 2007, Planetary Masses and Orbital Parameters from Radial Velocity Measurements, Extrasolar planets: formation, detection and dynamics, 1
  8. Behroozi, P. & Peeples, M. S., 2015, On the history and future of cosmic planet formation, MNRAS, 454, 1811
  9. Campbell, B., Walker, G. A. H., & Yang, S., 1988, A Search for Substellar Companions to Solar-type Stars, ApJ, 331, 902
  10. Carigi, L., Garcia-Rojas, J. & Meneses-Goytia, S., 2013, Chemical Evolution and the Galactic Habitable Zone of M31, RMxAA, 49, 253
  11. Cho, K. -S., Bong, S. -C., Moon, Y. -J., et al., 2011, Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI, A&A, 530, A16.
  12. Crill, B. & Siegler, N., 2019, NASA Exoplanet Exploration Program 2019 Technology Plan Appendix. Jet Propulsion Laboratory Publications No. D-102506.
  13. Dayal, P., Cockell, C., Rice, K., & Mazumdar, A., 2015, The Quest for Cradles of Life: Using the Fundamental Metallicity Relation to Hunt for the Most Habitable Type of Galaxy, ApJL, 810, L2
  14. Des Marais, D. J., Allamandola, L. J., Benner, S. A., Boss, A. P., Deamer, D., Falkowski, P. G., Farmer, J. D., et al., 2003, The NASA Astrobiology Roadmap, Astrobiology, 3, 2, 219
  15. Feinstein, A. D., Radica, M., Welbanks, L., et al., 2022, Early Release Science of the exoplanet WASP-39b with JWST NIRISS, arXiv:2211.10493
  16. Fridlund, M. & Kaltenegger, L., 2008, Mission Requirements: How to Search for Extrasolar Planets, Extrasolar Planets, 51
  17. Gehrels, N., Laird, C. M., Jackman, C. H., et al., 2003, Ozone Depletion from Nearby Supernovae, ApJ, 585, 1169.
  18. Gobat, R. & Hong, S. E., 2016, Evolution of galaxy habitability, A&A, 592, A96
  19. Gobat, R., Hong, S. E., Snaith, O. & Hong, S., 2021, Panspermia in a Milky Way-like Galaxy, ApJ, 921, 157
  20. Goldblatt, C., Claire, M. W., Lenton, T. M., et al., 2009, Nitrogen-enhanced greenhouse warming on early Earth, NatGe, 2, 891
  21. Gonzalez, G., Brownlee, D. & Ward, P., 2001, The Galactic Habitable Zone: Galactic Chemical Evolution, Icar, 152, 185
  22. Gowanlock, M. G., 2016, Astrobiological Effects of Gammaray Bursts in the Milky Way Galaxy, ApJ, 832, 38
  23. Gowanlock, M. G., Patton, D. R. & McConnell, S. M., 2011, A Model of Habitability Within the Milky Way Galaxy, AsBio, 11, 855
  24. Gunther, M. N., Zhan, Z., Seager, S., et al., 2020, Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs, AJ, 159, 60
  25. Hart, M. H., 1978, The evolution of the atmosphere of the earth, Icar, 33,23
  26. Hart, M. H., 1979, Habitable Zones about Main Sequence Stars, Icar, 37, 351
  27. Hatzes, A. P., Cochran, W. D., Endl, M., et al., 2003, A Planetary Companion to γ Cephei A, ApJ, 599, 1383
  28. Hong, S. E., Stewart, E. D., & Zoe, H., 2012, Anthropic likelihood for the cosmological constant and the primordial density perturbation amplitude, PhRvD, 85, 083510.
  29. Huang, S. S., 1959, Occurrence of Life in the Universe, AmSci, 47, 397
  30. Huang, S. S. 1960, The Sizes of Habitable Planets, PASP, 72, 489
  31. Inoue, S., Hayashi, K., Magara, T., et al., 2014, Magnetohydrodynamic Simulation of the X2.2 Solar Flare on 2011 February 15. I. Comparison with the Observations, ApJ, 788, 182.
  32. Kasting, J. F., Whitmire, D. P., & Reynolds, R. T., 1993, Habitable Zones around Main Sequence Stars, Icar, 101, 108
  33. Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al., 2013, Habitable Zones around Main-sequence Stars: New Estimates, ApJ, 765, 131
  34. Krissansen-Totton, J., Olson, S., & Catling, D. C., 2018, Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life, Science Advances, 4, eaao5747.
  35. Kwon, R. -Y., Zhang, J., & Vourlidas, A., 2015, Are Halo-like Solar Coronal Mass Ejections Merely a Matter of Geometric Projection Effects?, ApJL, 799, L29
  36. Lammer, H., Bredehoft, J. H., Coustenis, A., et al., 2009, What makes a planet habitable?, A&ARv, 17, 181
  37. Latham, D. W., Mazeh, T., Stefanik, R. P., Mayor, M., & Burki, G., 1989, The unseen companion of HD114762: a probable brown dwarf, Natur, 339, 38
  38. Lee, J., Shin, J., Snaith, O. N., et al., 2021, The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Gigaparsec Scales, ApJ, 908, 11
  39. Lineweaver, C. H., Fenner, Y., & Gibson, B. K., 2004, The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way, Sci, 303, 59
  40. Mayor, M. & Queloz, D., 1995, A Jupiter-mass companion to a solar-type star, Natur, 378, 355.
  41. Meadows, V. S., 2017, Reflections on O2 as a biosignature in exoplanetary atmospheres, AsBio, 17, 1022.
  42. National Academies of Sciences, Engineering, and Medicine, 2018, Exoplanet Science Strategy, Consensus Study Report, Washington, DC: The National Academies Press.
  43. National Academies of Sciences, Engineering, and Medicine, 2019, An Astrobiology Strategy for the Search for Life in the Universe, Washington, DC: The National Academies Press.
  44. National Academies of Sciences, Engineering, and Medicine, 2021, Decadal survey on astronomy and astrophysics 2020.
  45. Penny, M. T., Gaudi, B. S., Kerins, E., et al., 2019, Predictions of the WFIRST Microlensing Survey. I. Bound Planet Detection Rates, ApJS, 241, 3.
  46. Pogosian, L. & Vilenkin, A., 2007, Anthropic predictions for vacuum energy and neutrino masses in the light of WMAP-3, JCAP, 01(2007), 025
  47. Pontoppidan, K. M., Barrientes, J., Blomeet, C., et al., 2022, The JWST Early Release Observations, ApJL, 936, L14
  48. Prantzos, N., 2008, On the "Galactic Habitable Zone", SSRv, 135, 313
  49. Ramirez, R. M., 2018, A More Comprehensive Habitable Zone for Finding Life on Other Planets, Geosciences, 8, 280.
  50. Rasool, S. I. & deBergh, C., 1970, The Runaway Greenhouse and the Accumulation of CO2 in the Venus Atmosphere, Natur, 226, 1037
  51. Rauer, H. & Erikson, A., 2007, The transit method, Extrasolar Planets. Formation, Detection and Dynamics, ed. R. Dvorak (Wiley Online Library), 207
  52. Reines, A. E. & Volonteri, M., 2015, Relations between Central Black Hole Mass and Total Galaxy Stellar Mass in the Local Universe, ApJ, 813, 82.
  53. Rimmer, P. B., Xu, J., Thompson, S. J., et al., 2018, The origin of RNA precursors on exoplanets, SciA, 4, eaar3302
  54. Rustamkulov, Z., Sing, D. K., Mukherjee, S., et al., 2022, Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM, arXiv:2211.10487
  55. Schaye, J., Crain, R. A., Bower, R. G., et al., 2015, The EAGLE project: simulating the evolution and assembly of galaxies and their environments, MNRAS, 446, 521
  56. Selsis, F., Kasting, J. F., Levrard, B., et al., 2007, Habitable planets around the star Gliese 581?, A&A, 476, 1373
  57. Simoncini, E., Virgo, N. & Kleidon, A., 2013, Quantifying drivers of chemical disequilibrium: Theory and applications to methane in the Earth's atmosphere, Earth System Dynamics, 4, 317.
  58. Springel, V., Pakmor, R., Pillepich, A., et al,. 2018, First results from the IllustrisTNG simulations: matter and galaxy clustering, MNRAS, 475, 676
  59. Suthar, F. & McKay, C. P., 2012, Maintenance of permeable habitable subsurface environments by earthquakes and tidal stresses, IJAsB, 11, 157
  60. The LUVOIR Team, 2019, The LUVOIR Mission Concept Study Final Report, arXiv:1912.06219.
  61. Vukotic, B., Steinhauser, D., Martinez-Aviles, G., et al., 2016, 'Grandeur in this view of life': N-body simulation models of the Galactic habitable zone, MNRAS, 459, 3512
  62. Weinberg, S., 1987, Anthropic bound on the cosmological constant, PhRvL, 59, 2607
  63. Wolszczan, A. & Frail, D. A., 1992, A planetary system around the millisecond pulsar PSR1257+12, Natur, 355, 145
  64. Wordsworth, R. & Pierrehumbert, R., 2013, Hydrogen-Nitrogen Greenhouse Warming in Earth's Early Atmosphere, Sci, 339, 64
  65. Yang, H. & Liu, J., 2019, The Flare Catalog and the Flare Activity in the Kepler Mission, ApJS, 241, 29
  66. Zackrisson, E., Calissendorff, P., Gonzalez, J., et al., 2016, Terrestrial Planets across Space and Time, ApJ, 833, 214