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APPLICATION OF CONTRACTION MAPPING PRINCIPLE
IN PERIODIC BOUNDARY VALUE PROBLEMS

Amrish Handa

Abstract. We prove some common fixed point theorems for β-non-decreasing map-
pings under contraction mapping principle on partially ordered metric spaces. We
study the existence of solution for periodic boundary value problems and also give
an example to show the degree of validity of our hypothesis. Our results improve
and generalize various known results.

1. Introduction

Fixed point theorems in metric spaces play a major role for solving problems
in applied mathematics and science. The Banach contraction mapping principle is
a classical and powerful tool in nonlinear analysis, it guarantees the existence and
uniqueness of fixed points of certain self maps of metric spaces.

Ran and Reurings [24] extended the Banach contraction principle in partially
ordered sets with applications, while Nieto and López [23] extended the results of
Ran and Reurings [24] and applied it in periodic boundary value problems. Some of
our basic references are [1, 7− 11, 13− 16, 26− 28].

In this paper, we establish a unique common fixed point theorem for β-non-
decreasing mappings under contraction mapping principle on partially ordered met-
ric spaces. With the help of the obtain results, we indicate the formation of coupled
fixed point results. We apply our result to obtain the solution for periodic boundary
value problems and also give an example to show the degree of validity of our hy-
pothesis. We modify, improve, sharpen, enrich and generalize the results of Alotaibi
and Alsulami [2], Alsulami [3], Gnana-Bhaskar and Lakshmikantham [4], Harjani et
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al. [17], Harjani and Sadarangani [18], Lakshmikantham and Ciric [21], Luong and
Thuan [22], Nieto and Rodriguez-Lopez [23], Ran and Reurings [24], Razani and
Parvaneh [25], Su [28] and many other famous results in the existing literature.

2. Fixed Point Results

Throughout the paper, we denote by X a non-empty set and ¹ will represent a
partial order on X. Given n ∈ N with n ≥ 2, let Xn be the nth Cartesian product
X ×X × ...×X (n times). For simplicity, if x ∈ X, we denote β(x) by βx.

Definition 2.1 ([4, 11]). A partially ordered metric space (X, d, ¹) is a metric space
(X, d) provided with a partial order ¹ . A partially ordered metric space (X, d, ¹)
is said to be non-decreasing-regular (respectively, non-increasing-regular) if for every
sequence {xn} ⊆ X such that {xn} → x and xn ¹ xn+1 (respectively, xn º xn+1)
for all n ≥ 0, we have that xn ¹ x (respectively, xn º x) for all n ≥ 0. (X, d, ¹) is
said to be regular if it is both non-decreasing-regular and non-increasing-regular.

We say that α is (β, ¹)-non-decreasing if αx ¹ αy for all x, y ∈ X such that
βx ¹ βy. If β is the identity mapping on X, we say that α is ¹-non-decreasing.

Definition 2.2 ([6]). Two self-mappings α and β of a non-empty set X are said to
be commutative if αβx = βαx for all x ∈ X.

Definition 2.3 ([19]). Let (X, d, ¹) be a partially ordered metric space. Two
mappings α, β : X → X are said to be compatible if

lim
n→∞ d(αβxn, βαxn) = 0,

provided that {xn} is a sequence in X such that

lim
n→∞αxn = lim

n→∞βxn ∈ X.

Definition 2.4 ([20]). Two self-mappings α and β of a non-empty set X are said to
be weakly compatible if they commute at their coincidence points, that is, if αx = βx

for some x ∈ X, then αβx = βαx.

Definition 2.5 ([28]). An altering distance function is a function ψ : [0, +∞) → [0,

+∞) which satisfied the following conditions:
(iψ) ψ is continuous and non-decreasing,
(iiψ) ψ(t) = 0 if and only if t = 0.
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Theorem 2.1. Let (X, d, ¹) be a partially ordered metric space and α, β : X → X

be two mappings satisfying
(i) α is (β, ¹)−non-decreasing and α(X) ⊆ β(X),
(ii) there exists x0 ∈ X such that βx0 ¹ αx0,

(iii) there exist an altering distance function ψ and a right upper semi-continuous
function ϕ : [0, +∞) → [0, +∞) such that

ψ(d(αx, αy)) ≤ ϕ(d(βx, βy)),

for all x, y ∈ X with βx ¹ βy, where ψ(t) > ϕ(t) for all t > 0 and ϕ(0) = 0. Also
assume that one of the following conditions holds.

(a) (X, d) is complete, α and β are continuous and the pair (α, β) is compatible,
(b) (β(X), d) is complete and (X, d, ¹) is non-decreasing-regular,
(c) (X, d) is complete, β is continuous and monotone non-decreasing, the pair

(α, β) is compatible and (X, d, ¹) is non-decreasing-regular.
Then α and β have a coincidence point. Furthermore,
(iv) for each x, y ∈ X there exists u ∈ X such that αu is comparable to αx and

αy and also the pair (α, β) is weakly compatible.
Then α and β have a unique common fixed point.

Proof. Since x0 ∈ X and by (i), we have αx0 ∈ α(X) ⊆ β(X), there exists x1 ∈ X

such that αx0 = βx1. Then, by (ii), we have βx0 ¹ αx0 = βx1. Since α is (β, ¹)-
non-decreasing, αx0 ¹ αx1. Now αx1 ∈ α(X) ⊆ β(X), so there exists x2 ∈ X such
that αx1 = βx2. Then βx1 = αx0 ¹ αx1 = βx2. Since α is (β, ¹)−non-decreasing,
αx1 ¹ αx2. Repeating this argument, we get a sequence {xn}n≥0 such that {βxn}
is ¹-non-decreasing, βxn+1 = αxn ¹ αxn+1 = βxn+2 and

(2.1) βxn+1 = αxn for all n ≥ 0.

Let ζn = d(βxn, βxn+1) for all n ≥ 0. Now, by using contractive condition (iii),
we have

(2.2) ψ(d(βxn+1, βxn+2)) = ψ(d(αxn, αxn+1)) ≤ ϕ(d(βxn, βxn+1)),

which, by the fact ψ(t) > ϕ(t) for all t > 0, implies that

ψ(d(βxn+1, βxn+2)) < ψ(d(βxn, βxn+1)).

It follows, from the monotonicity of ψ, that

d(βxn+1, βxn+2) < d(βxn, βxn+1), that is, ζn+1 < ζn.
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This shows that the sequence {ζn}n≥0 is a decreasing sequence of positive numbers.
Then there exists ζ ≥ 0 such that

(2.3) lim
n→∞ ζn = lim

n→∞ d(βxn, βxn+1) = ζ.

We claim that ζ = 0. If possible, suppose ζ > 0. Taking n → ∞ in (2.2), by using
the property of ψ, ϕ and (2.3), we obtain

ψ(ζ) = lim
n→∞ψ(d(βxn+1, βxn+2)) ≤ lim

n→∞ϕ(d(βxn, βxn+1)) ≤ ϕ(ζ),

which contradicts the fact that ψ(t) > ϕ(t) for all t > 0. Hence, by (2.3), we get

(2.4) lim
n→∞ ζn = lim

n→∞ d(βxn, βxn+1) = 0.

Now we shall show that {βxn}n≥0 is a Cauchy sequence in X. If possible, suppose
that {βxn} is not a Cauchy sequence. Then there exists an ε > 0 for which two
sequences of positive integers {m(k)} and {n(k)} exist such that for all positive
integers k, and

d(βxn(k), βxm(k)) ≥ ε, for n(k) > m(k) > k.

Suppose n(k) is the smallest such positive integer, then

d(βxn(k)−1, βxm(k)) < ε.

By using triangle inequality, we have

ε ≤ d(βxn(k), βxm(k))

≤ d(βxn(k), βxn(k)−1) + d(βxn(k)−1, βxm(k))

≤ d(βxn(k), βxn(k)−1) + ε.

Letting k →∞ in the above inequality, by using (2.4), we have

(2.5) lim
k→∞

d(βxn(k), βxm(k)) = ε.

Again, by using triangle inequality, we have

d(βxn(k)+1, βxm(k)+1)

≤ d(βxn(k)+1, βxn(k)) + d(βxn(k), βxm(k)) + d(βxm(k), βxm(k)+1).

Letting k →∞ in the above inequality, using (2.4) and (2.5), we have

(2.6) lim
k→∞

d(βxn(k)+1, βxm(k)+1) = ε.
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As n(k) > m(k), so βxn(k) º βxm(k), and hence by using contractive condition (iii),
we have

ψ(d(βxn(k)+1, βxm(k)+1)) = ψ(d(αxn(k), αxm(k))) ≤ ϕ(d(βxn(k), βxm(k))).

Letting k → ∞ in the above inequality, by using the property of ψ, ϕ and (2.5),
(2.6), we have

ψ(ε) ≤ ϕ(ε),

which contradicts the fact that ε > 0. Consequently {βxn}n≥0 is a Cauchy sequence
in X.

Suppose now that (a) holds, that is, (X, d) is complete, α and β are continuous
and the pair (α, β) is compatible. Since (X, d) is complete, therefore there exists
z ∈ X such that {βxn} → z. It follows, from (2.1), that {αxn} → z. As α and
β are continuous, then {αβxn} → αz and {ββxn} → βz. Since the pair (α, β) is
compatible, we conclude that

d(βz, αz) = lim
n→∞ d(ββxn+1, αβxn) = lim

n→∞ d(βαxn, αβxn) = 0,

that is, z is a coincidence point of α and β.

Suppose now that (b) holds, that is, (β(X), d) is complete and (X, d, ¹) is
non-decreasing-regular. Since {βxn} is a Cauchy sequence in the complete space
(β(X), d), therefore there exist y ∈ β(X) such that {βxn} → y. Let z ∈ X be
any point such that y = βz, then in such case {βxn} → βz. Also, as (X, d, ¹) is
non-decreasing-regular, {βxn} is ¹-non-decreasing and converging to βz, so we get
βxn ¹ βz for all n ≥ 0. Applying the contractive condition (iii), we have

ψ(d(βxn+1, αz)) = ψ(d(αxn, αz)) ≤ ϕ(d(βxn, βz)).

Taking n →∞ in the above inequality, by using (iiψ) and the fact that {βxn} → βz,

we get d(βz, αz) = 0, that is, z is a coincidence point of α and β.

Suppose now that (c) holds, that is, (X, d) is complete, β is continuous and mono-
tone non-decreasing, the pair (α, β) is compatible and (X, d, ¹) is non-decreasing-
regular. As (X, d) is complete, so there exists z ∈ X such that {βxn} → z. It
follows, from (2.1), that {αxn} → z. Since β is continuous, therefore {ββxn} → βz.

Furthermore, as the pair (α, β) is compatible, so we have

lim
n→∞ d(ββxn+1, αβxn) = lim

n→∞ d(βαxn, αβxn) = 0

and {ββxn} → βz. These facts together imply that {αβxn} → βz.
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Since (X, d, ¹) is non-decreasing-regular and {βxn} is ¹-non-decreasing and
converging to z, we obtain βxn ¹ z for all n ≥ 0, which, by the monotonicity of β,

implies ββxn ¹ βz. Applying the contractive condition (iii), we get

ψ(d(αβxn, αz)) ≤ ϕ(d(ββxn, βz)).

Taking n → ∞ in the above inequality, by using (iiψ), the fact that {αβxn} → βz

and {ββxn} → βz, we get d(βz, αz) = 0, that is, z is a coincidence point of α and
β.

Since the set of coincidence points of α and β is non-empty, suppose x and y are
coincidence points of α and β, that is, αx = βx and αy = βy. Now, we shall show
that βx = βy. By the assumption, there exists u ∈ X such that αu is comparable
with αx and αy. Put u0 = u and choose u1 ∈ X so that βu0 = αu1. Then, we
can inductively define sequences {βun} where βun+1 = αun for all n ≥ 0. Hence
αx = βx and αu = αu0 = βu1 are comparable. Suppose that βu1 ¹ βx. We claim
that βun ¹ βx for each n ∈ N. For this, we shall use mathematical induction. As
βu1 ¹ βx and so our claim is true for n = 1.

Now, suppose that βun ¹ βx holds for some n > 1. Since α is β-nondecreasing
with respect to ¹, we get βun+1 = αun ¹ αx = βx. Thus our claim is proved.

Let ξn = d(βun, βx) for all n ≥ 0. Since βun ¹ βx, by using the contractive
condition (iii), we have

(2.7) ψ(d(βun+1, βx)) = ψ(d(αun, αx)) ≤ ϕ(d(βun, βx)),

which, by the fact that ψ(t) > ϕ(t) for all t > 0, implies

ψ(d(βun+1, βx)) < ψ(d(βun, βx)).

It follows, from the monotonicity of ψ, that

d(βun+1, βx) < d(βun, βx), that is, ξn+1 < ξn.

This shows that the sequence {ξn}n≥0 is a decreasing sequence of positive numbers.
Then there exists ξ ≥ 0 such that

(2.8) ξn = lim
n→∞ d(βun, βx) = ξ.

We claim that ξ = 0. If possible, suppose ξ > 0. Taking n → ∞ in (2.7), by using
the property of ψ, ϕ and (2.8), we obtain

ψ(ξ) = lim
n→∞ψ(d(βun+1, βx)) ≤ lim

n→∞ϕ(d(βun, βx)) ≤ ϕ(ξ),
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which contradicts the fact that ξ > 0. Thus, by (2.8), we get

(2.9) lim
n→∞ d(βun, βx) = 0.

Similarly, one can prove that

(2.10) lim
n→∞ d(βun, βy) = 0.

Hence, by (2.9) and (2.10), we get

(2.11) βx = βy.

Since αx = βx, by weak compatibility of α and β, we have αβx = βαx = ββx. Let
z = βx, then αz = βz, that is, z is a coincidence point of α and β. Then from (2.11)
with y = z, it follows that βx = βz, that is, z = βz = αz. Hence z is a common fixed
point of α and β. To prove the uniqueness, assume that w is another common fixed
point of α and β. Then by (2.11) we have w = βw = βz = z. Hence the common
fixed point of α and β is unique. ¤

If we take β = I (the identity mapping) in Theorem 2.1, we get the following
result:

Corollary 2.2. Let (X, d, ¹) be a partially ordered complete metric space and
α : X → X be a mapping satisfying

(i) α is ¹ −non-decreasing,
(ii) there exists x0 ∈ X such that x0 ¹ αx0,

(iii) there exist an altering distance function ψ and a right upper semi-continuous
function ϕ : [0, +∞) → [0, +∞) such that

ψ(d(αx, αy)) ≤ ϕ(d(x, y)),

for all x, y ∈ X with x ¹ y, where ψ(t) > ϕ(t) for all t > 0 and ϕ(0) = 0. Then
α has a fixed point.

If we take ψ(t) = t and ϕ(t) = kt with k < 1 for all t ≥ 0 in Theorem 2.1, we get
the following result:

Corollary 2.3. Let (X, d, ¹) be a partially ordered metric space and let α, β : X →
X be two mappings satisfying (i) and (ii) of Theorem 2.1 and

(iii) there exists k < 1 such that

d(αx, αy) ≤ kd(βx, βy),



296 Amrish Handa

for all x, y ∈ X with βx ¹ βy. Also assume that one of the conditions (a) − (c)
of Theorem 2.1 holds. Then α and β have a coincidence point. Furthermore, if
condition (iv) of Theorem 2.1 holds. Then α and β have a unique common fixed
point.

If we take β = I (the identity mapping) in Corollary 2.3, we get the following
result:

Corollary 2.4. Let (X, d, ¹) be a partially ordered complete metric space and
α : X → X be a mapping satisfying (i) and (ii) of Corollary 2.2 and

(iii) there exists k < 1 such that

d(αx, αy) ≤ kd(x, y),

for all x, y ∈ X with x ¹ y. Then α has a fixed point.

Example 2.1. Let X = R be a metric space with the usual metric d : X2 → [0,

+∞) equipped with the natural ordering of real numbers ≤ . Let α, β : X → X be
defined as

αx = ln(1 + x2) and βx = x2, for all x ∈ X.

Define

ψ(t) = t and ϕ(t) = ln(1 + t), for t ≥ 0

Now

ψ(d(αx, αy)) = d(αx, αy)

= |αx− αy|
=

∣∣ln(1 + x2)− ln(1 + y2)
∣∣

=
∣∣∣∣ln

(
1 + x2

1 + y2

)∣∣∣∣

=
∣∣∣∣ln

(
1 +

x2 − y2

1 + y2

)∣∣∣∣
≤ ln

(
1 +

∣∣x2 − y2
∣∣)

≤ ln (1 + |βx− βy|)
≤ ln (1 + d(βx, βy))

≤ ϕ(d(βx, βy)).
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Thus the contractive condition of Theorem 2.1 is satisfied for all x, y ∈ X. Further-
more, all the other conditions of Theorem 2.1 are satisfied and z = 0 is a unique
common fixed point of α and β.

3. Coupled Fixed Point Results

Consider the partially ordered metric space (X2, δ, v), where δ : X2 ×X2 → [0,

+∞) defined by

δ(V, W ) = max{d(x, u), d(y, v)}, ∀V = (x, y) and W = (u, v) ∈ X2,

and v was introduced as follows

W v V ⇔ x º u and y ¹ v, for all W = (u, v) and V = (x, y) ∈ X2.

Let f : X2 → X and g : X → X be two mappings, then we define mappings Φ,

Θ : X2 → X2, for all V = (x, y) ∈ X2, by

Φ(V ) = (f(x, y), f(y, x)) and Θ(V ) = (gx, gy).

Definition 3.1 ([12]). Let f : X2 → X be a given mapping. An element (x, y) ∈ X2

is called a coupled fixed point of f if

f(x, y) = x and f(y, x) = y.

Definition 3.2 ([4]). Let (X, ¹) be a partially ordered set. Suppose f : X2 → X

be a given mapping. We say that f has the mixed monotone property if for all x,

y ∈ X, we have

x1, x2 ∈ X, x1 ¹ x2 =⇒ f(x1, y) ¹ f(x2, y),

y1, y2 ∈ X, y1 ¹ y2 =⇒ f(x, y1) º f(x, y2).

Definition 3.3 ([21]). Let f : X2 → X and g : X → X be given mappings. An
element (x, y) ∈ X2 is called a coupled coincidence point of the mappings f and g if

f(x, y) = gx and f(y, x) = gy.

Definition 3.4 ([21]). Let f : X2 → X and g : X → X be given mappings. An
element (x, y) ∈ X2 is called a common coupled fixed point of the mappings f and
g if

x = f(x, y) = gx and y = f(y, x) = gy.
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Definition 3.5 ([21]). Mappings f : X2 → X and g : X → X are said to be
commutative if

gf(x, y) = f(gx, gy), for all (x, y) ∈ X2.

Definition 3.6 ([21]). Let (X, ¹) be a partially ordered set. Suppose f : X2 → X

and g : X → X are given mappings. We say that f has the mixed g− monotone
property if for all x, y ∈ X, we have

x1, x2 ∈ X, gx1 ¹ gx2 =⇒ f(x1, y) ¹ f(x2, y),

y1, y2 ∈ X, gy1 ¹ gy2 =⇒ f(x, y1) º f(x, y2).

If g is the identity mapping on X, then f satisfies the mixed monotone property.

Definition 3.7 ([5]). Mappings f : X2 → X and g : X → X are said to be
compatible if

lim
n→∞ d(gf(xn, yn), f(gxn, gyn)) = 0,

lim
n→∞ d(gf(yn, xn), f(gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞ f(xn, yn) = lim

n→∞ gxn = x ∈ X,

lim
n→∞ f(yn, xn) = lim

n→∞ gyn = y ∈ X.

Definition 3.8 ([6]). Let X be a non-empty set. Two mappings g : X → X and
f : X2 → X are said to be weakly compatible if they commute at their coupled
coincidence points, that is, if f(x, y) = gx and f(y, x) = gy for some (x, y) ∈ X2,

then gf(x, y) = f(gx, gy) and gf(y, x) = f(gy, gx).

Lemma 3.1 ([7, 15, 16]). Let (X, d, ¹) be a partially ordered metric space, f :
X2 → X, g : X → X and Φ, Θ : X2 → X2 be mappings. Then

(1) (X, d) is complete if and only if (X2, δ) is complete.
(2) If (X, d, ¹) is regular, then (X2, δ, v) is also regular.
(3) If f is d-continuous, then Φ is δ-continuous.
(4) f has the mixed monotone property with respect to ¹ if and only if Φ is

v −non-decreasing.
(5) f has the mixed g−monotone property with respect to ¹ if and only if then Φ

is (Θ, v)-non-decreasing.



APPLICATION OF CONTRACTION MAPPING PRINCIPLE 299

(6) If there exist two elements x0, y0 ∈ X with gx0 ¹ f(x0, y0) and gy0 º f(y0,

x0), then there exists a point V0 = (x0, y0) ∈ X2 such that Θ(V0) v Φ(V0).
(7) If f(X2) ⊆ g(X), then Φ(X2) ⊆ Θ(X2).
(8) If f and g are commuting in (X, d, ¹), then Φ and Θ are also commuting in

(X2, δ, v).
(9) If f and g are compatible in (X, d, ¹), then Φ and Θ are also compatible in

(X2, δ, v).
(10) If f and g are weak compatible in (X, d, ¹), then Φ and Θ are also weak

compatible in (X2, δ, v).
(11) A point (x, y) ∈ X2 is a coupled coincidence point of f and g if and only if

it is a coincidence point of Φ and Θ.

(12) A point (x, y) ∈ X2 is a coupled fixed point of f if and only if it is a fixed
point of Φ.

Theorem 3.1. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume f : X2 → X and g : X → X are two mappings such that
f has the mixed g−monotone property with respect to ¹ on X and there exist an
altering distance function ψ and a right upper semi-continuous function ϕ : [0,

+∞) → [0, +∞) such that

(3.1) ψ(d(f(x, y), f(u, v))) ≤ ϕ(max{d(gx, gu), d(gy, gv)}),

for all x, y, u, v ∈ X, with gx ¹ gu and gy º gv. Suppose that f(X2) ⊆ g(X), g

is continuous and monotone non-decreasing and the pair {f, g} is compatible. Also
suppose that either

(a) f is continuous or
(b) (X, d, ¹) is regular.
Assume that there exist two elements x0, y0 ∈ X with

gx0 ¹ f(x0, y0) and gy0 º f(y0, x0).

Then f and g have a coupled coincidence point. Moreover, if for every (x, y),
(x∗, y∗) ∈ X2, there exists a point (u, v) ∈ X2 such that (f(u, v), f(v, u)) is
comparable to (f(x, y), f(y, x)) and (f(x∗, y∗), f(y∗, x∗)), and also the pair (f, g)
is weakly compatible. Then f and g have a unique common coupled fixed point.

Proof. Let x, y, u, v ∈ X be such that gx ¹ gu and gy º gv. Then by using
contractive condition (3.1), we have
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ψ(d(f(x, y), f(u, v))) ≤ ϕ(max{d(gx, gu), d(gy, gv)}).
Furthermore since gy º gv and gx ¹ gu, the contractive condition (3.1) also

ensure that

ψ(d(f(y, x), f(v, u))) ≤ ϕ(max{d(gx, gu), d(gy, gv)}).
Combining them, we get

max{ψ(d(f(x, y), f(u, v))), ψ(d(f(y, x), f(v, u)))}
≤ ϕ(max{d(gx, gu), d(gy, gv)})

It follows, from the monotonicity of ψ, that

ψ(max{d(f(x, y), f(u, v)), d(f(y, x), f(v, u))})(3.2)

≤ ϕ(max{d(gx, gu), d(gy, gv)}).
Thus by using (3.2), for each V = (x, y) and W = (u, v) ∈ X2, we have

ψ(δ(Φ(V ), Φ(W )))

= ψ(max{d(f(x, y), f(u, v)), d(f(y, x), f(v, u))})
≤ ϕ(max{d(gx, gu), d(gy, gv)})
≤ ϕ(δ(Θ(V ), Θ(W ))).

It is only require to use Theorem 2.1 to the mappings α = Φ and β = Θ in the
partially ordered metric space (X2, δ, v) with the help of Lemma 3.1. ¤

Corollary 3.2. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume f : X2 → X has mixed monotone property with respect to
¹ on X and there exist an altering distance function ψ and a right upper semi-
continuous function ϕ : [0, +∞) → [0, +∞) such that

ψ(d(f(x, y), f(u, v))) ≤ ϕ(max{d(x, u), d(y, v)}),
for all x, y, u, v ∈ X, with x ¹ u and y º v. Also suppose that either

(a) f is continuous or
(b) (X, d, ¹) is regular.
Assume that there exist two elements x0, y0 ∈ X with

x0 ¹ f(x0, y0) and y0 º f(y0, x0).

Then f has a coupled fixed point.
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In a similar manner, we may state the results analogous to Corollary 2.3 for
Theorem 3.1 and Corollary 3.2.

4. Application to Ordinary Differential Equations

In this section, first we obtain the solution for the following first-order periodic
problem:

(4.1) u′(t) = f(t, u(t)), t ∈ [0, T ] and u(0) = u(T ),

where T > 0 and f : I ×R→ R is a continuous function. Let X = C(I, R) (I = [0,

T ]) of all continuous functions from I to R. It is obvious that X is a complete metric
space with respect to the sup metric

d(x, y) = sup
t∈I

|x(t)− y(t)| , for all x, y ∈ X.

Also X can be equipped with a partial order given by, for all x, y ∈ X,

x ¹ y ⇐⇒ x(t) ≤ y(t), for all t ∈ I.

Definition 4.1. A lower solution for (4.1) is a function x ∈ C1(I, R) such that

x′(t) ≤ f(t, x(t)) for t ∈ I and x(0) = x(T ) = 0.

Theorem 4.1. Consider problem (4.1) with f : I × R → R continuous and for x,

y ∈ X with x º y,

0 ≤ f(t, x) + λx− f(t, y)− λy ≤ λ

2
(x− y).

Then the existence of a lower solution of (4.1) provides the existence of a solution
of (4.1).

Proof. Problem (4.1) is equivalent to the following integral equation

u(t) =
∫ T

0
G(t, s)[f(s, u(s)) + λu(s)]ds,

where G(t, s) is the Green function given by

G(t, s) =





eλ(T+s−t)

eλT − 1
, 0 ≤ s < t ≤ T,

eλ(s−t)

eλT − 1
, 0 ≤ t < s ≤ T.
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Define the mapping α : X → X by

α(x)(t) =
∫ T

0
G(t, s)[f(s, x(s)) + λx(s)]ds.

Suppose that x1 º x2, then by using our assumption, we can obtain f(t, x1)+λx1 ≥
f(t, x2) + λx2. As G(t, s) > 0, for t ∈ I, it follows that

α(x1)(t) =
∫ T

0
G(t, s)[f(s, x1(s)) + λx1(s)]ds

≥
∫ T

0
G(t, s)[f(s, x2(s)) + λx2(s)]ds = α(x2)(t).

Thus α is ¹ −non-decreasing. Now, for each x º y, we have

d(α(x), α(y)) = sup
t∈I

|α(x)(t)− α(y)(t)|

= sup
t∈I

∣∣∣∣
∫ T

0
G(t, s)[f(s, x(s)) + λx(s)− f(s, y(s))− λy(s)]ds

∣∣∣∣

≤ sup
t∈I

∣∣∣∣
∫ T

0
G(t, s) · λ

2
(x(s)− y(s))ds

∣∣∣∣

≤ λ

2
d(x, y) sup

t∈I

∣∣∣∣
∫ T

0
G(t, s)ds

∣∣∣∣

≤ λ

2
d(x, y) sup

t∈I

∣∣∣∣∣
∫ t

0

eλ(T+s−t)

eλT − 1
ds +

∫ T

t

eλ(s−t)

eλT − 1
ds

∣∣∣∣∣

≤ 1
2
d(x, y).

Thus the contractive condition of Corollary 2.4 is satisfied with k = 1/2 < 1. Finally,
let x ∈ X be a lower solution of (4.1), then we have

x′(s) + λx(s) ≤ f(s, x(s)) + λx(s), for all t ∈ I.

Multiplying by G(t, s), we get
∫ T

0
x′(s)G(t, s)ds + λ

∫ T

0
x(s)G(t, s)ds ≤ α(x)(t), for all t ∈ I.

Then, for all t ∈ I, we have
∫ t

0
x′(s)

eλ(T+s−t)

eλT − 1
ds +

∫ T

t
x′(s)

eλ(s−t)

eλT − 1
ds + λ

∫ T

0
x(s)G(t, s)ds ≤ α(x)(t).

Using integration by parts and since x(0) = x(T ) = 0, for all t ∈ I, we get x(t) ≤
α(x)(t). This implies that x ¹ α(x). Thus all the hypothesis of Corollary 2.4 are
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satisfied. Consequently, α has a fixed point x ∈ X which is the solution to (4.1) in
X = C(I, R). ¤

Next we obtain the solution of the following two-point boundary value problem.

(4.2)
{ −x′′(t) = f(t, x(t), x(t)), t ∈ [0, 1],

x(0) = x(1) = 0,

where f : [0, 1] × R × R → R is a continuous function. The space X = C(I, R)
(I = [0, 1]) denote the set of all continuous functions from I to R. Obviously X is
a complete metric space with respect to the sup metric and equipped with a partial
order given by, for all x, y ∈ X,

x ¹ y ⇐⇒ x(t) ≤ y(t), for all t ∈ I.

Theorem 4.2. Assume that the following hold:
(a) f : [0, 1]× R× R→ R is continuous.
(b) Suppose that there exists 0 ≤ γ ≤ 8 such that for all t ∈ I, x º u and y ¹ v,

0 ≤ f(t, x, y)− f(t, u, v) ≤ γ

√
g(x− u) + g(y − v)

2
,

where g(t) : [0, +∞) → [0, +∞) is a right upper semi-continuous and non-decreasing
function with g(0) = 0, g(t) < t2, for all t > 0.

(c) There exists (α, β) ∈ C2(I, R)× C2(I, R) such that


−α′′(t) ≤ f(t, α(t), β(t)), t ∈ [0, 1],
−β′′(t) ≥ f(t, β(t), α(t)), t ∈ [0, 1],

α(0) = α(1) = β(0) = β(1) = 0.

Then problem (4.2) has a solution in C2(I, R).

Proof. It is well known that the solution (in C2(I, R)) of problem (4.2) is equivalent
to the solution (in C(I, R)) of the following Hammerstein integral equation:

x(t) =
∫ 1

0
G(t, s)f(s, x(s), x(s))ds for t ∈ [0, 1],

where G(t, s) is the Green function of differential operator − d2

dt2
with Dirichlet

boundary condition x(0) = x(1) = 0, that is,

G(t, s) =
{

t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

Define the mapping F : X2 → X by

F (x, y)(t) =
∫ 1

0
G(t, s)f(s, x(s), y(s))ds, t ∈ [0, 1] and x, y ∈ X.
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It follows from (b) that, F has the mixed monotone property with respect to the
partial order ¹ in X. Let x, y, u, v ∈ X such that x º u and y ¹ v. From (b), we
have

d(F (x, y), F (u, v)) = sup
t∈I

|F (x, y)(t)− F (u, v)(t)|

= sup
t∈I

∫ 1

0
G(t, s)[f(s, x(s), y(s))− f(s, u(s), v(s))]ds

≤ γ sup
t∈I

∫ 1

0
G(t, s) ·

√
g(x(s)− u(s)) + g(y(s)− v(s))

2
ds

≤ γ

√
g(d(x, u)) + g(d(y, v))

2
sup
t∈I

∫ 1

0
G(t, s)ds.

Now, since g is non-decreasing, we have

g(d(x, u)) ≤ g(max{d(x, u), d(y, v)}),
g(d(y, v)) ≤ g(max{d(x, u), d(y, v)}),

which implies

g(d(x, u)) + g(d(y, v))
2

≤ g(max{d(x, u), d(y, v)}).
Thus

(4.3) d(F (x, y), F (u, v)) ≤ γ
√

g(max{d(x, u), d(y, v)}) sup
t∈I

∫ 1

0
G(t, s)ds.

It is easy to obtain that
∫ 1

0
G(t, s)ds = − t2

2
+

t

2
and sup

t∈[0, 1]

∫ 1

0
G(t, s)ds =

1
8
.

These facts, (4.3) and the hypothesis 0 < γ ≤ 8 give us

d(F (x, y), F (u, v)) ≤ γ

8

√
g(max{d(x, u), d(y, v)})

≤
√

g(max{d(x, u), d(y, v)}).
Hence

d(F (x, y), F (u, v))2 ≤ g(max{d(x, u), d(y, v)}).
Put ψ(t) = t2 and ϕ(t) = g(t). Obviously, ψ is an altering distance function, ψ(t)
and ϕ(t) satisfy the condition of ψ(t) > ϕ(t) for t > 0. From the last inequality, we
have

ψ(d(F (x, y), F (u, v))) ≤ ϕ(max{d(x, u), d(y, v)}).
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Now, let (α, β) ∈ C2(I, R)× C2(I, R) satisfying (c), then

−α′′(s) ≤ f(s, α(s), β(s)), s ∈ [0, 1].

Multiplying by G(t, s), we get
∫ 1

0
−α′′(s)G(t, s)ds ≤ F (α, β)(t), t ∈ [0, 1].

Then, for all t ∈ [0, 1], we have

−(1− t)
∫ t

0
sα′′(s)ds− t

∫ 1

t
(1− s)α′′(s)ds ≤ F (α, β)(t).

Using integration by parts and since α(0) = α(1) = 0, for all t ∈ [0, 1], we get

−(1− t)(tα′(t)− α(t))− t(−(1− t)α′(t)− α(t)) ≤ F (α, β)(t).

Thus, we have

α(t) ¹ F (α, β)(t), for t ∈ [0, 1].

This implies that α ¹ F (α, β). Similarly, one can prove that β º F (β, α). Thus all
the hypothesis of Corollary 3.2 are satisfied. Consequently, F has a coupled fixed
point (x, y) ∈ X2 which is the solution to (4.2) in X = C2(I, R). ¤
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