
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
https://doi.org/10.7468/jksmeb.2023.30.3.237 ISSN(Online) 2287-6081
Volume 30, Number 3 (August 2023), Pages 237–248

ON s-TOPOLOGICAL d-ALGEBRAS

Alias Khalaf a, Balasubramaniyan Jaya Bharathi b and
Neelamegarajan Rajesh c, ∗

Abstract. The aim of this paper is to study the concept of s-topological d-algebras
which is a d-algebra supplied with a certain type of topology that makes the binary
operation defined on it d-topologically continuous. This concept is a generalization
of the concept of topological d-algebra. We obtain several properties of s-topological
d-algebras.

1. Introduction

Among the important subjects of pure mathematics are topology and algebra.
Topology studies continuity, convergence, and so on, while algebra studies all types
of operations and provides a basis for calculations and algorithms. The basic prin-
ciple describing the relation between topology and algebraic operations is to make
these operations topologically continuous, maybe in the first or second variable or
in jointly continuous which is defined as Topological Algebra. In recent years, sev-
eral researchers have contributed to the development of this subject. Algebras and
topology, are two fundamental subjects of pure mathematics. From the beginning
of twentieth century many mathematicians have contributed to the development of
this subject. After Y. Imai and K. Iseki [1] gave an axiom system of propositional
calculus in 1966 and in the same year K. Iseki [2] gave an algebraic formulation for
the BCK-propositional calculus system, several mathematicians have been written
on the concept of BCK-algebras and found many of the algebraic properties of the
BCK-algebras. In 1999, J. Neggers and H. S. Kim introduced and studied the con-
cept of d-algebrs in [5]. In [8], N. Nagamani and N. Kandara studied the topological
aspects of the d-structure. In this paper, we study d-algebras equipped with certain
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topologies in which the operation of the structure satisfied a certain type of continu-
ity, we name this d-algebra joined with such topologies by s-topological d-algebra. It
is proved that every topological d-algebra is s-topological d-algebra. Further, many
topological properties of a d-algebra were found.

2. Preliminaries

For the development of this paper, we give necessary definitions and properties
of a d-algebra and investigate the concept of a topological d-algebra.

Definition 2.1 ([5]). A d-algebra is a non-empty set X with a constant 0 and a
binary operation ” ∗ ” satisfying the following axioms: for every x, y ∈ X,

(1) x ∗ x = 0,
(2) 0 ∗ x = 0,
(3) x ∗ y = 0 and y ∗ x = 0 ⇒ x = y.

Definition 2.2 ([2]). By a BCK-algebra we mean an algebra (X, ∗, 0) of type (2, 0)
satisfying the following axioms: for every x, y, z ∈ X,

(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(2) (x ∗ (x ∗ y)) ∗ y = 0,
(3) x ∗ x = 0,
(4) x ∗ y = 0 and y ∗ x = 0 ⇒ x = y,
(5) 0 ∗ x = 0.

Remark 1 ([5]). Every BCK-algebra is a d-algebra.

Definition 2.3. A subset F of a d-algebra X is called a filter of X if it satisfy the
following properties:

(1) the constant 0 ∈ F , and
(2) for all x, y ∈ X, if x ∗ y ∈ F , x ∈ F , then y ∈ F .

Definition 2.4 ([6]). A subset I of a d-algebra X is called an ideal of X if it satisfies
the following properties:

(1) the constant 0 ∈ I,
(2) for all x, y, z ∈ X. If x ? (y ? z) ∈ I, y ∈ I, then x ? z ∈ I.

From the definition of d-algebras we can get the following properties.
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Definition 2.5 ([8]). A d-algebra X equipped with a topology τ is called a topo-
logical d-algebra (for short td-algebra) if f : X ×X → X defined by f(x, y) = x ∗ y

is continuous for all (x, y) ∈ X ×X where X ×X has the product topology. Equiv-
alently, if for each open set O containing x ∗ y, there exist open sets U and V

containing x and y respectively such that U ∗ V ⊆ O.

Definition 2.6 ([8]). Let X be a d-algebra, and a ∈ X. A left map La : X → X

defined by, La(x) = a∗x, for all x ∈ X and a right map Ra : X → X by Ra(x) = x∗a
for all x ∈ X. We denote L(X) to be the family of all La for all a ∈ X.

Definition 2.7 ([8]). A d-algebra X is called a positive implicative d-algebra, if
(y ∗ x) ∗ (z ∗ x) = (y ∗ z) ∗ x for all x, y, z ∈ X.

Definition 2.8 ([4]). For a subset A of a topological space (X, τ), we say that A

is regular open [9] if A = Int(Cl(A)) and it is semi-open [4] if A ⊆ Cl(Int(A)). The
complement of a semi-open set is called a semi-closed. The closure, interior, semi-
closure and semi-interior of A are denoted, respectively by Cl(A), Int(A), sCl(A)
and s Int(A).

Definition 2.9 ([3]). A BCK-algebra X equipped with a topology τ is called an
s-topological BCK-algebra if the function f : X ×X → X defined by f(x, y) = x ∗ y

has the property that for each open set O containing x ∗ y, there exists an open set
U containing x and a semi-open set V containing y such that U ∗ V ⊆ O for all
x, y ∈ X.

Remark 2. For a topological space (X, τ), we set the following
τ(x) = {U : x ∈ U and U ∈ τ}
SO(x) = {U : x ∈ U and U is semiopen in X}

3. Properties of s-topological d-algebras

In this section, we introduce the concept of s-topological d-algebras and establish
some of their properties.

Definition 3.1. A d-algebra X equipped with a topology τ is called an s-topological
d-algebra (sd-algebra, for short) if the function f : X ×X → X defined by f(x, y) =
x∗y has the property that for each O ∈ τ(x∗y), there exist U ∈ τ(x) and V ∈ SO(y)
such that U ∗ V ⊆ O for all x, y ∈ X.
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Lemma 3.2. A d-algebra (X, f, 0), (f stands for the operation ∗), equipped with a
topology τ is a sd-algebra if f−1(O) is a semi-open set in X×X for each O ∈ τ(x∗y)
and all x, y ∈ X.

Example 1. It is obvious that every td-algebra is sd-algebra but not conversely.
Consider a d-algebra X = {0, a, b, c} with the following following Cayley table:

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b b 0 0
c c c c 0

Let τ = P (X\{0}) ∪X. Then X is sd-algebra which is not td-algebra.

Proposition 3.3. For any subset A of an sd-algebra X and any element x ∈ X,
the following statements are true:

(1) Cl(A) ∗ x ⊂ Cl(A ∗ x).
(2) If Cl(A) ∗ x is closed, then Cl(A) ∗ x = Cl(A ∗ x).

Proof. (1). Let y ∈ Cl(A) ∗ x and U ∈ τ(y). So y = a ∗ x where a ∈ Cl(A). Since X

is sd-algebra, there exist V ∈ τ(a) and G ∈ SO(x) such that V ∗ G ⊆ U . Also we
have a ∈ Cl(A) implies that A ∩ V 6= ∅. Suppose that b ∈ A ∩ V , so b ∗ x ∈ A ∗ x

and b ∗ x ∈ V ∗ x ⊆ V ∗G ⊆ U . Hence y ∈ Cl(A ∗ x).
(2). Suppose that Cl(A) ∗ x is closed and y ∈ Cl(A ∗ x). If y /∈ Cl(A) ∗ x, then
y ∈ X\(Cl(A) ∗ x), which is an open set. Hence A ∗ x ⊆ Cl(A) ∗ x. Then we have
A ∗ x ∩X\(Cl(A) ∗ x) = ∅, a contradiction. ¤

The following example shows that the equality in (1) of Proposition 3.3 is not
true and Cl(A) ∗ x is not closed.

Example 2. Consider a d-algebra X = {0, a, b, c} with the following following
Cayley table:

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b b 0 b
c c c c 0
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Consider the topology τ on X defined as: τ = {∅, X, {b}, {c}, {b, c}}. Then X is sd-
algebra. If A = {0, a}, then Cl(A)∗b = {0}, which is not closed and Cl(A∗b) = {0, a},
so Cl(A) ∗ b 6= Cl(A ∗ b).

Proposition 3.4. For any subset A of an sd-algebra X and any element x ∈ X,
the following statements are true:

(1) x ∗ sCl(A) ⊂ Cl(x ∗A).
(2) If x ∗ sCl(A) is closed, then x ∗ sCl(A) = Cl(x ∗A).
(3) In general, the equality in (1) is not true and x ∗ sCl(A) is not closed.

Proof. (1). Let y ∈ x ∗ sCl(A) and U ∈ τ(y). So y = x ∗ a, where a ∈ sCl(A).
Since X is sd-algebra, there exist V ∈ τ(x) and G ∈ SO(a) such that V ∗ G ⊆ U .
Also a ∈ sCl(A) implies A ∩ G 6= ∅. Suppose that b ∈ A ∩ G, so x ∗ b ∈ x ∗ A and
x ∗ b ∈ x ∗G ⊆ V ∗G ⊆ U . Hence y ∈ Cl(A ∗ x).
(2). Suppose that x ∗ sCl(A) is closed and y ∈ Cl(x ∗A). If y /∈ Cl(x ∗A), then y ∈
X\(x∗sCl(A) ∈ τ . Then x∗A ⊆ x∗sCl(A), so we get (x∗A)∩X\(x∗sCl(A)) = ∅,
a contradiction.
(3). In Example 2, if A = {0, a}, then b ∗ sCl(A) = {b}, which is not closed and
Cl(b ∗A) = {0, a, b}, so b ∗ sCl(A) 6= Cl(b ∗A). ¤

Corollary 3.5. For any subset A of an sd-algebra X and any element x ∈ X, the
following statements are true:

(1) If A ∗ x is closed, then Cl(A) ∗ x = A ∗ x.
(2) If x ∗A is closed, then x ∗ sCl(A) = x ∗A.

Proof. Follows from Propositions 3.3 and 3.4. ¤

Proposition 3.6. For any subsets A and B of an sd-algebra X, the following state-
ments are true:

(1) Cl(A) ∗ sCl(B) ⊆ Cl(A ∗B).
(2) If Cl(A) ∗ sCl(B) is closed, then Cl(A) ∗ sCl(B) = Cl(A ∗B).

Proof. (1). Let x ∈ Cl(A)∗sCl(B) and U ∈ τ(x). So x = a∗b, where a ∈ Cl(A) and
b ∈ sCl(B). Since X is sd-algebra, there exist V ∈ τ(a) and G ∈ SO(b) such that
V ∗G ⊆ U . Also a ∈ Cl(A) and b ∈ sCl(B) implies that A ∩ V 6= ∅ and B ∩G 6= ∅.
Suppose that a1 ∈ A∩V and b1 ∈ B∩G, so a1 ∗ b1 ∈ A∗B and a1 ∗ b1 ∈ V ∗G ⊆ U .
Hence x ∈ Cl(A ∗B).
(2). Suppose that Cl(A) ∗ sCl(B) is closed and let x ∈ Cl(A ∗ B). If x /∈ Cl(A) ∗
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sCl(B), then x ∈ X\(Cl(A) ∗ sCl(B)) ∈ τ . Then A ∗ B ⊆ Cl(A) ∗ sCl(B), so we
get (A ∗B) ∩X\(Cl(A) ∗ sCl(B)) = ∅, a contradiction. ¤

Proposition 3.7. In an sd-algebra X, if {0} is open, then X is discrete.

Proof. Suppose that {0} ∈ τ and let x ∈ X. Since x ∗ x = 0 for all x ∈ X and X

is sd-algebra, there exist U ∈ τ(x) and G ∈ SO(x) such that U ∗ G ⊆ {0}. Hence
V = U ∩G ∈ SO(x). If V contains any other point y, then x ∗ y = 0 and y ∗ x = 0,
a contradiction. Hence V ∈ SO(x). Then {x} ∈ τ . Hence X is discrete. ¤

Definition 3.8 ([7]). A topological space (X, τ) is called

(1) semi-T1 if for each two distinct points x, y ∈ X there two semi-open sets U

and V such that U containing x but not y and V containing y but not x.
(2) semi-T2 if for each two distinct points x, y ∈ X there two disjoint semi-open

sets U and V such that x ∈ U and y ∈ V .

Proposition 3.9. In an sd-algebra X, if {0} is closed, then X is semi-T2.

Proof. Suppose that {0} is closed and x, y ∈ X. Then either x ∗ y 6= 0 or y ∗ x 6= 0.
Suppose that y ∗ x 6= 0. Then there exist V ∈ τ(y) and G ∈ SO(x) such that
V ∗G ⊆ X\{0}. Hence V ∈ SO(x) and G ∈ SO(y) such that V ∩G = ∅. Hence X

is semi-T2. ¤

Proposition 3.10. If the sd-algebra (X, ∗, τ) is T0, then it is semi-T1.

Proof. Let x, y ∈ X and x 6= y. Then either x ∗ y 6= 0 or y ∗ x 6= 0. Suppose that
x ∗ y 6= 0. Since X is T0, there exists an open set W containing one of them but not
the other. Suppose that W ∈ τ(x∗y) and 0 /∈ W . Since (X, ∗, τ) is sd-algebra, there
exist U ∈ τ(x) and V ∈ SO(y) such that U ∗ V ⊆ W . Then U ∈ SO(x), V ∈ SO(y)
such that U ∩ V = ∅. If 0 ∈ W and x ∗ y /∈ W . Then x ∗ x = 0 ∈ W , so there s an
open set U containing x and a semi-open set V containing x such that U ∗ V ∈ W ,
and y ∗ y = 0 ⊆ W , there s an open set U1 containing y and a semi-open set V1

containing y such that U1 ∗V1 ⊆ W . Therefore, G = U ∩V and H = U1∩V1 are two
semi-open sets containing x and y respectively. It is clear that y /∈ G and x /∈ H.
Hence (X, ∗, τ) is a semi-T1 space. ¤

Definition 3.11 ([6]). A non-empty subset A of a d-algebra X is called a d-
subalgebra of X if x ∗ y ∈ A ∀x, y ∈ A.
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Proposition 3.12. If Y is an open d-subalgebra of an sd-algebra X, then Y is also
an sd-algebra.

Proof. Let x, y ∈ Y and let U be any open set in the subspace Y containing x ∗ y,
then there exist V ∈ τ(x ∗ y) such that U = Y ∩ V . Since X is sd-algebra, there
exist W ∈ τ(x) and G ∈ SO(y) such that W ∗G ⊆ V . But O = W ∩ Y is an open
set in Y containing x and H = G∩ Y is a semi-open set in Y containing y, we have
(W ∩ Y ) ∗G ∩ Y = (W ∗G) ∩ Y ⊆ V ∩ Y = U . ¤

Proposition 3.13. If A is an ideal in an sd-algebra X and 0 ∈ Int(A), then A is
open.

Proof. Let x ∈ A. Since 0 ∈ Int(A) and x ∗ x = 0, there exists U ∈ τ(0) such that
0 ∈ U ⊆ A. Since X is sd-algebra, there exist V ∈ τ(x) such that V ∗ x ⊆ U . If
y ∈ V ∩ (X\A), the we have y ∗ x ∈ A. Since x ∈ A and A is ideal, y ∈ A, a
contradiction. Hence x ∈ V ⊆ A implies that A is open. ¤

Proposition 3.14. If A is an open ideal in an sd-algebra X, then A is semi-closed.

Proof. Let x /∈ A. Then there exist V ∈ τ(x) and U ∈ SO(x) such that V ∗ U ⊆ A,
since x∗x = 0. Hence if W = V ∩U , then W ∈ SO(x) and W ∗W ⊆ A. If y ∈ W ∩A

and since A is ideal, then W ⊆ A, a contradiction. Hence W ⊆ X\A and hence A

is semi-closed. ¤

Definition 3.15. Let (X, ∗, 0) be a sd-algebra and F ⊆ X. Then F is said to be a
filter if

(1) 0 ∈ F ,
(2) If 0 6= x ∈ F and x ∗ y ∈ F , then y ∈ F .

Proposition 3.16. Let (X, ∗, τ) be sd-algebra and F be a filter on X. If 0 is an
interior point of F , then F is semi-open.

Proof. Suppose that 0 is an interior point of F . Then there exists U ∈ τ(0) such
that U ⊆ F . Let x ∈ F . Since x ∗ x = 0, there exist V ∈ τ(x) and W ∈ SO(x) such
that V ∗W ⊆ U ⊆ F . Now, for each W ∈ SO(y), we have x ∗ y ∈ F . Since F is a
filter and x ∈ F , y ∈ F . Hence x ∈ W ⊆ F and so F ∈ SO(X). ¤

Proposition 3.17. Let (X, ∗, τ) be a sd-algebra and F a filter of X. If F is open,
then it is closed.
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Proof. Let F be a filter of X, which is open in X. We show that X\F is open. Let
x ∈ X\F . Since F is open, 0 is an interior point of F . Since x ∗ x = 0, there exist
V ∈ τ(x) and W ∈ SO(x) such that V ∗ W ⊆ F . We claim that V ⊆ X\F . If
V * X\F , then there exists y ∈ V ∩F . For each z ∈ W , we have y ∗z ∈ V ∗W ⊆ F ,
since y ∈ F and F is a filter, z ∈ F . Hence W ⊆ F and so x ∈ F , a contradiction.
Then x ∈ V ⊆ X\F , which implies that X\F is open and hence, F is closed. ¤

Definition 3.18. Let X be a d-algebra, U a non-empty subset of X and a ∈ X.
The subsets Ua and aU are defined as follows: Ua = {x ∈ X : x ∗ a ∈ U} and

aU = {x ∈ X : a ∗ x ∈ U}. Also if K ⊆ X we put KU =
⋃

a∈K
aU and UK =

⋃
a∈K

Ua

Proposition 3.19. Let X be a d-algebra and A,B,W,K any non-empty subsets of
X. Then

(1) If A ⊆ B, then AW ⊆B W .
(2) If W ⊆ K, then AW ⊆ AK .
(3) If F ⊆ X, then X\Fa = (X\F )a and X\aF = a(X\F ) for each a ∈ X.

Proposition 3.20. Let X be an sd-algebra, U and F any two non-empty subsets
of X. Then

(1) If U is open, then Ua is open and aU is semi-open.
(2) If F is closed, then Fa is closed and aF is semi-closed.

Proof. (1). Let U ∈ τ , a ∈ X and x ∈ Ua. Then x ∗ a ∈ U . Since X is sd-algebra,
there exist G ∈ τ(x) and A ∈ SO(a) such that G ∗ A ⊆ U , x ∗ a ∈ Ga ⊆ U , thus
G ∗ a ⊆ U . Then x ∈ G ⊆ Ua. So Ua ∈ τ . To prove that aU ∈ SO(X). Let x ∈ aU

implies that a ∗ x ∈ U . Since X is sd-algebra, there exist A ∈ τ(a) and H ∈ SO(x)
such that A ∗H ⊆ U . Then a ∗ x ∈ aH ⊆ U and a ∗H ⊆ U . Hence x ∈ H ⊆ aU .
Therefore, aU ∈ SO(X).
(2). Let F be closed, then X\F is open. Hence by (1), (X\F )a ∈ τ and a(X\F ) ∈
SO(X). By Proposition 3.19, X\Fa = (X\F )a and X\aF = a(X\F ). Hence X\Fa

is open and X\aF is semi-open. Consequently, Fa is closed and aF is semi-closed. ¤

Definition 3.21. Let X be a d-algebra. The binary operation ¯ will be defined on
L(X) as (La ¯ Lb)(x) = La(x) ∗ Lb(x) for all x ∈ X.

Theorem 3.22. Let X be a positive implicative d-algebra, then (L(X),¯, L0) is a
d-algebra.
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Proof. Let La, Lb ∈ L(X). Then (La ¯ Lb)(x) = La(x) ∗ Lb(x) = (a ∗ x) ∗ (b ∗ x).
Since X is positive implication d-algebra, (a ∗ x) ∗ (b ∗ x) = (a ∗ b) ∗ x. Hence
(La ¯ Lb)(x) = L∗b(x), implies that La ¯ Lb = La∗b for all a, b ∈ X. Now (1).
((Lx¯Ly)¯(Lx¯Lz))¯(Lz¯Ly) = (Lx∗y¯Lx∗z)¯Lz∗y = L((x∗y)∗(x∗z))∗(z∗y) = L0.
(2). (Lx¯ (Lx¯Ly))¯Ly = (Lx¯Lx∗y)¯Ly = L(x∗(x∗y)¯Ly = L(x∗(x∗y))∗y = L0.
(3). Lx ¯ Lx = Lx∗x = L0.
(4). Lx ¯ Ly = L0 and Ly ¯ Lx = L0, then Lx ∗ y = L0 and Ly ∗ x = L0, implies
that x ∗ y = 0 and y ∗ x = 0 ⇒ x = y and hence, Lx = Ly.
(5). L0 ¯ Lx = L0 ∗ x = L0. Hence, L(X) is a d-algebra. ¤

Definition 3.23. Let X be a d-algebra, we define a map Ψ : X → L(X) by
Ψ(x) = Lx for all x ∈ X and if A is any subset of X, then LA = {La : a ∈ A}.

Remark 3. If X is a positive implicative d-algebra, then the following statements
can be easily proved.

(1) If A ⊆ B, then Ψ(A) ⊆ Ψ(A).
(2) If A and B are any two subsets of X, then Ψ(A ∪ B) = Ψ(A) ∪ Ψ(B) and

Ψ(A ∩B) = Ψ(A) ∩Ψ(B).

Proposition 3.24. Let X be a positive implicative d-algebra, then the map Ψ : X →
L(X) is a d-isomorphism.

Proof. It is clear that Ψ is a bijection. We have Ψ(x ∗ y) = Lx∗y and Lx∗y(z) =
(x ∗ y) ∗ z. Since X is positive implicative, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z). Then
Lx ∗ y(z) = Lx(z)¯ Ly(z) = (Lx ¯ Ly)(z). Hence Ψ(x ∗ y) = Ψ(x)¯Ψ(y) for all x,
x ∈ X, so Ψ is a d-isomorphism. ¤

Proposition 3.25. Let X be a positive implicative d-algebra and τ be a topology on
X, then the following statements are true:

(1) The family σ = {Ψ(G) ⊆ L(X) : G ∈ τ} is a topology on L(X).
(2) For any subset A of X, LCl(A) = Cl(LA).
(3) If A is any semi-open set in (X, τ), then Ψ(A) is a semi-open set in (L(X), σ).

Proof. (1). The proof of σ is a topology and hence it is obvious.
(2). For any A ⊆ X, we have A ⊆ Cl(A). Hence LA ⊆ LCl(A) and Cl(A) is closed
in X. Then by definition of σLCl(A) is closed in L(X). Hence we obtain Cl(LA) ⊆
Cl(LCl(A)) = LCl(A). To prove LCl(A) ⊆ Cl(LA), let Lx ∈ LCl(A), then x ∈ Cl(A).
Let LG ∈ τ(Lx). Hence G ∈ τ(x), hence A∩G 6= ∅. Therefore, LA∩LG 6= ∅, implies
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that Lx ∈ Cl(LA), so LCl(A) ⊆ Cl(LA) and hence LCl(A) = Cl(LA).
(3). Let A ∈ SO(X). Then there exists O ∈ τ such that O ⊆ A ⊆ Cl(O). Hence
LO ⊆ LA ⊆ LCl(O) and by (2), LO ⊆ LA ⊆ Cl(LCl(o)). Hence LA is semi-open in
L(X). ¤

Proposition 3.26. Let X be a positive implicative sd-algebra. Then (L(X),¯, σ)
is an sd-algebra.

Proof. Let LW be an open set containing Lx ¯ Ly = Lx∗y. Hence W ∈ τ(x ∗ y).
Since X is an sd-algebra, there exist U ∈ τ(x), V ∈ SO(y) and U ∗ V ⊆ W . Then
LU ∗ V ⊆ LW . Since X is positive implicative, LU ∗ V = LU ¯ LV ⊆ LW . By
Proposition 3.25, LV is semi-open in L(X) containing Ly. ¤

Recall that a function f : X → Y is semi-continuous [4] if the inverse image of
each open set in Y is a semi-open set in X, and it is semi-open if the image of each
open set is semi-open.

Proposition 3.27. Let X be an sd-algebra, then every left map on X is semi-
continuous.

Proof. Let a ∈ X, define a left map La : X → X by La(x) = a ∗ x, for all x ∈ X.
Let W ∈ τ(La(x) = a ∗ x). Since X is an sd-algebra, there exist U ∈ τ(x) and
V ∈ SO(x) such that U ∗ V ⊆ W . Clearly, a ∗ V ⊆ U ∗ V ⊆ W . Hence La(V ) ⊆ W

and hence La is semi-continuous. ¤

Definition 3.28. A d-algebra X is called s-transitive (resp. s-open) if for each
a ∈ X\{0}, the left map La is semi-continuous (resp. semi-open) and it is transitive
open if the right map Ra is both continuous and open.

Proposition 3.29. Let X be an sd-algebra such that for each a ∈ X\{0}, the left
map La is semi-open. If U ∈ τ , then the following statements are true:

(1) a ∗ U ∈ SO(X).
(2) L−1

a (U) = {x ∈ X : a ∗ x ∈ U} ∈ SO(X).
(3) A ∗ U ∈ SO(X) for each A ⊆ X.

Proof. Since La is semi-open and U is open, La(U) = a∗U ∈ SO(X). By Proposition
3.27, La is semi-continuous. Hence L−1

a (U) = {x ∈ X : a∗x ∈ U} ∈ SO(X). Lastly,
we have A ∗ U =

⋃
a∈A

(a ∗ U) ∈ SO(X). ¤
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Proposition 3.30. Let X be an sd-algebra, then every right map on X is continu-
ous.

Proof. Let a ∈ X, define a right map Ra : X → X by Ra(x) = x ∗ a for all x ∈ X.
Let W ∈ τ(Ra(x) = x ∗ a). Since X is an sd-algebra, there exist U ∈ τ(x) and
V ∈ SO(a) such that U ∗ V ⊆ W . Clearly, U ∗ a ⊆ U ∗ V ⊆ W . Hence Ra(U) ⊆ W

and hence Ra is continuous. ¤

Proposition 3.31. Let U be an open subset of a transitive open sd-algebra X and
let a ∈ X. Then the following statements are true:

(1) U ∗ a ∈ τ .
(2) R−1

a (U) = {x ∈ X : x ∗ a ∈ U} ∈ τ .
(3) U ∗A ∈ τ for each A ⊆ X.

Proof. Since Ra ∈ τ and U ∈ τ , La(U) = U ∗ a ∈ τ . By Proposition 3.30, Ra is
continuous. So R−1

a (U) = {x ∈ X : a∗x ∈ U} ∈ τ . Also U ∗A =
⋃

a∈A

(U ∗a) ∈ τ . ¤

Definition 3.32. A d-algebra X is called an edge d-algebra if x ∗ X = {0, x} for
each x ∈ X.

Proposition 3.33. Let X be any s-transitive s-open edge d-algebra and τ be any
topology on X, then there exists a topology σ on X which is sd-algebra.

Proof. Let x ∈ X\{0}, then Lx is s-open map. Since X ∈ τ , by Proposition 3.3,
Lx(X) ∈ SO(X). Hence Lx(X) = x ∗X = {0, x} as X is an edge d-algebra. Then
{0, x} ∈ SO(X) for all x ∈ X. Since {0, x} ∈ SO(X) for all x ∈ X, Int({0, x}) 6= ∅
for all x ∈ X. Then we have the following cases: Either Int({0, x}) = {0} or
Int({0, x}) = {0, x} or Int({0, x}) = {x} for all x ∈ X. In the first two cases we
obtain that {0} ∈ τ , so σ is the discrete topology. The last case gives us {x} ∈ τ

for all x ∈ X\{0}. We claim that X equipped with the topology σ is an sd-algebra.
For this, let U ∈ τ(x ∗ y). If x 6= 0 and y 6= 0, then {x} ∈ τ(x) and {y} ∈ τ(y), so
{x} ∗ {y} ⊆ U . If x = 0, then x ∗ y = 0 and hence if U ∈ τ(0), we have U ∗ {y} ⊆ U .
If y = 0, then x ∗ 0 = x and U = {x} ∈ τ and if y ∈ X such that x > y, then
{0, y} ∈ SO(0) and {x} ∗ {0, y} ⊆ {x}. Hence X is an sd-algebra. ¤
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