DOI QR코드

DOI QR Code

Evaluation of Various Escherichia coli Strains for Enhanced Lycopene Production

  • Jun Ren (Department of Biomedical Engineering, Chung-Ang University) ;
  • Junhao Shen (Department of Biomedical Engineering, Chung-Ang University) ;
  • Thi Duc Thai (Department of Biomedical Engineering, Chung-Ang University) ;
  • Min-gyun Kim (Department of Biomedical Engineering, Chung-Ang University) ;
  • Seung Ho Lee (Department of Biomedical Engineering, Chung-Ang University) ;
  • Wonseop Lim (Department of Biomedical Engineering, Chung-Ang University) ;
  • Dokyun Na (Department of Biomedical Engineering, Chung-Ang University)
  • Received : 2023.02.03
  • Accepted : 2023.04.07
  • Published : 2023.07.28

Abstract

Lycopene is a carotenoid widely used as a food and feed supplement due to its antioxidant, anti-inflammatory, and anti-cancer functions. Various metabolic engineering strategies have been implemented for high lycopene production in Escherichia coli, and for this purpose it was essential to select and develop an E. coli strain with the highest potency. In this study, we evaluated 16 E. coli strains to determine the best lycopene production host by introducing a lycopene biosynthetic pathway (crtE, crtB, and crtI genes cloned from Deinococcus wulumuqiensis R12 and dxs, dxr, ispA, and idi genes cloned from E. coli). The 16 lycopene strain titers diverged from 0 to 0.141 g/l, with MG1655 demonstrating the highest titer (0.141 g/l), while the SURE and W strains expressed the lowest (0 g/l) in an LB medium. When a 2 × YTg medium replaced the MG1655 culture medium, the titer further escalated to 1.595 g/l. These results substantiate that strain selection is vital in metabolic engineering, and further, that MG1655 is a potent host for producing lycopene and other carotenoids with the same lycopene biosynthetic pathway.

Keywords

Acknowledgement

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2022M3A9B6082687) and the Chung-Ang University Research Grants in 2022.

References

  1. Di Mascio P, Kaiser S, Sies H. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532-538.  https://doi.org/10.1016/0003-9861(89)90467-0
  2. Armstrong GA. 1997. Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu. Rev. Microbiol. 51: 629-659.  https://doi.org/10.1146/annurev.micro.51.1.629
  3. Mein JR, Lian F, Wang XD. 2008. Biological activity of lycopene metabolites: implications for cancer prevention. Nutr. Rev. 66: 667-683.  https://doi.org/10.1111/j.1753-4887.2008.00120.x
  4. Bignotto L, Rocha J, Sepodes B, Eduardo-Figueira M, Pinto R, Chaud M, et al. 2009. Anti-inflammatory effect of lycopene on carrageenan-induced paw oedema and hepatic ischaemia-reperfusion in the rat. Br. J. Nutr. 102: 126-133.  https://doi.org/10.1017/S0007114508137886
  5. Erdman JW, Jr., Ford NA, Lindshield BL. 2009. Are the health attributes of lycopene related to its antioxidant function? Arch. Biochem. Biophys. 483: 229-235.  https://doi.org/10.1016/j.abb.2008.10.022
  6. Story EN, Kopec RE, Schwartz SJ, Harris GK. 2010. An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol. 1: 189-210.  https://doi.org/10.1146/annurev.food.102308.124120
  7. Hernandez-Almanza A, Montanez J, Martinez G, Aguilar-Jimenez A, Contreras-Esquivel JC, Aguilar CN. 2016. Lycopene: progress in microbial production. Trends Food Sci. Technol. 56: 142-148.  https://doi.org/10.1016/j.tifs.2016.08.013
  8. Choudhari SM, Ananthanarayan L, Singhal RS. 2009. Purification of lycopene by reverse phase chromatography. Food Bioprocess Technol. 2: 391-399.  https://doi.org/10.1007/s11947-008-0054-1
  9. Sevgili A, Erkmen O. 2019. Improved lycopene production from different substrates by mated fermentation of Blakeslea Trispora. Foods 8: 120. 
  10. Niu FX, Lu Q, Bu YF, Liu JZ. 2017. Metabolic engineering for the microbial production of isoprenoids: carotenoids and isoprenoid-based biofuels. Synth. Syst. Biotechnol. 2: 167-175.  https://doi.org/10.1016/j.synbio.2017.08.001
  11. Liu XJ, Liu RS, Li HM, Tang YJ. 2012. Lycopene production from synthetic medium by Blakeslea trispora NRRL 2895 (+) and 2896 (-) in a stirred-tank fermenter. Bioprocess Biosyst. Eng. 35: 739-749.  https://doi.org/10.1007/s00449-011-0654-4
  12. Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N. 1994. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces-Cerevisiae. Biosci. Biotechnol. Biochem. 58: 1112-1114.  https://doi.org/10.1271/bbb.58.1112
  13. Farmer WR, Liao JC. 2000. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18: 533-537.  https://doi.org/10.1038/75398
  14. Zhou Y, Nambou K, Wei L, Cao J, Imanaka T, Hua Q. 2013. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnol. Lett. 35: 2137-2145.  https://doi.org/10.1007/s10529-013-1317-0
  15. Kim YS, Lee JH, Kim NH, Yeom SJ, Kim SW, Oh DK. 2011. Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 90: 489-497.  https://doi.org/10.1007/s00253-011-3091-z
  16. Roukas T. 2016. The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Crit. Rev. Biotechnol. 36: 424-433. 
  17. Zhu FY, Lu L, Fu S, Zhong XF, Hu MZ, Deng ZX, et al. 2015. Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem. 50: 341-346.  https://doi.org/10.1016/j.procbio.2014.12.008
  18. Bahieldin A, Gadalla NO, Al-Garni SM, Almehdar H, Noor S, Hassan SM, et al. 2014. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid 72: 18-28.  https://doi.org/10.1016/j.plasmid.2014.03.001
  19. Kang CK, Yang JE, Park HW, Choi YJ. 2020. Enhanced lycopene production by UV-C irradiation in radiation-resistant Deinococcus radiodurans R1. J. Microbiol. Biotechnol. 30: 1937-1943.  https://doi.org/10.4014/jmb.2009.09013
  20. Demissie ZA, Erland LA, Rheault MR, Mahmoud SS. 2013. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase. J. Biol. Chem. 288: 6333-6341.  https://doi.org/10.1074/jbc.M112.431171
  21. Xie F, Niu S, Lin X, Pei S, Jiang L, Tian Y, et al. 2021. Description of Microbacterium luteum sp. nov., Microbacterium cremeum sp. nov., and Microbacterium atlanticum sp. nov., three novel C50 carotenoid producing bacteria. J. Microbiol. 59: 886-897.  https://doi.org/10.1007/s12275-021-1186-5
  22. Hwang CY, Cho ES, Rhee WJ, Kim E, Seo MJ. 2022. Genomic and physiological analysis of C50 carotenoid-producing novel Halorubrum ruber sp. nov. J. Microbiol. 60: 1007-1020.  https://doi.org/10.1007/s12275-022-2173-1
  23. Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N. 1998. Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl. Environ. Microbiol. 64: 1226-1229.  https://doi.org/10.1128/AEM.64.4.1226-1229.1998
  24. Xu X, Tian L, Xu J, Xie C, Jiang L, Huang H. 2018. Analysis and expression of the carotenoid biosynthesis genes from Deinococcus wulumuqiensis R12 in engineered Escherichia coli. AMB Express 8: 94. 
  25. Xu X, Jiang L, Zhang Z, Shi Y, Huang H. 2013. Genome sequence of a gamma- and UV-ray-resistant strain, Deinococcus wulumuqiensis R12. Genome Announc. 1: 3. 
  26. Kim SW, Keasling JD. 2001. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 72: 408-415.  https://doi.org/10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H
  27. Yuan LZ, Rouviere PE, LaRossa RA, Suh W. 2006. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E-coli. Metab. Eng. 8: 79-90.  https://doi.org/10.1016/j.ymben.2005.08.005
  28. Kang MJ, Yoon SH, Lee YM, Lee SH, Kim JE, Jung KH, et al. 2005. Enhancement of lycopene production in Escherichia coli by optimization of the lycopene synthetic pathway. J. Microbiol. Biotechnol. 15: 880-886. 
  29. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. 2013. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170-174.  https://doi.org/10.1038/nbt.2461
  30. Vadali RV, Fu Y, Bennett GN, San KY. 2005. Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol. Prog. 21: 1558-1561.  https://doi.org/10.1021/bp050124l
  31. Alper H, Miyaoku K, Stephanopoulos G. 2006. Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl. Microbiol. Biotechnol. 72: 968-974.  https://doi.org/10.1007/s00253-006-0357-y
  32. Alanen HI, Walker KL, Lourdes Velez Suberbie M, Matos CF, Bonisch S, Freedman RB, et al. 2015. Efficient export of human growth hormone, interferon alpha2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation. Biochim. Biophys. Acta 1853: 756-763.  https://doi.org/10.1016/j.bbamcr.2014.12.027
  33. Elliott SJ, Nandapalan N, Chang BJ. 1991. Production of type 1 fimbriae by Escherichia coli HB101. Microb. Pathog. 10: 481-486.  https://doi.org/10.1016/0882-4010(91)90114-P
  34. Chasse GA, Mak ML, Deretey E, Farkas I, Torday LL, Papp JG, et al. 2001. An ab initio computational study on selected lycopene isomers. J. Mol. Struc-Theochem. 571: 27-37.  https://doi.org/10.1016/S0166-1280(01)00424-9
  35. Chasse GA, Chasse KP, Kucsman A, Torday LL, Papp JG. 2001. Conformational potential energy surfaces of a Lycopene model. J. Mol. Struc-Theochem. 571: 7-26.  https://doi.org/10.1016/S0166-1280(01)00413-4
  36. Lee SY, Lee KM, Chan HN, Steinbuchel A. 1994. Comparison of recombinant Escherichia coli strains for synthesis and accumulation of poly-(3-hydroxybutyric acid) and morphological changes. Biotechnol. Bioeng. 44: 1337-1347.  https://doi.org/10.1002/bit.260441110
  37. Kim B, Park H, Na D, Lee SY. 2014. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol. J. 9: 621-629.  https://doi.org/10.1002/biot.201300263
  38. Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, et al. 2009. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J. Biotechnol. 140: 218-226.  https://doi.org/10.1016/j.jbiotec.2009.01.008
  39. Lee PC, Mijts BN, Schmidt-Dannert C. 2004. Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 65: 538-546.  https://doi.org/10.1007/s00253-004-1619-1
  40. Yang J, Guo LJMcf. 2014. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb. Cell Fact. 13: 1-11.  https://doi.org/10.1186/1475-2859-13-1
  41. Yu P, Chen K, Huang X, Wang X, Ren Q. 2018. Production of gamma-aminobutyric acid in Escherichia coli by engineering MSG pathway. Prep. Biochem. Biotech. 48: 906-913.  https://doi.org/10.1080/10826068.2018.1514519
  42. Xu J, Xu X, Xu Q, Zhang Z, Jiang L, Huang H. 2018. Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids. Bioprocess Biosyst. Eng. 41: 489-499.  https://doi.org/10.1007/s00449-017-1883-y
  43. Chiang CJ, Ho YJ, Hu MC, Chao YP. 2020. Rewiring of glycerol metabolism in Escherichia coli for effective production of recombinant proteins. Biotechnol. Biofuels. 13: 205. 
  44. Martinez-Gomez K, Flores N, Castaneda HM, Martinez-Batallar G, Hernandez-Chavez G, Ramirez OT, et al. 2012. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb. Cell Fact. 11: 46. 
  45. Biselli E, Schink SJ, Gerland U. 2020. Slower growth of Escherichia coli leads to longer survival in carbon starvation due to a decrease in the maintenance rate. Mol. Syst. Biol. 16: e9478. 
  46. Terol GL, Gallego-Jara J, Martinez RAS, Vivancos AM, Diaz MC, Puente TD. 2021. Impact of the expression system on recombinant protein production in Escherichia coli BL21. Front. Microbiol. 12: 682001. 
  47. Wang Z, Sun J, Yang Q, Yang J. 2020. Metabolic engineering Escherichia coli for the production of lycopene. Molecules 25: 3136. 
  48. Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462.  https://doi.org/10.1126/science.277.5331.1453
  49. Spratt SK, Ginsburgh CL, Nunn WD. 1981. Isolation and genetic characterization of Escherichia coli mutants defective in propionate metabolism. J. Bacteriol. 146: 1166-1169.  https://doi.org/10.1128/jb.146.3.1166-1169.1981
  50. Qian ZG, Xia XX, Lee SY. 2011. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol. Bioeng. 108: 93-103.  https://doi.org/10.1002/bit.22918
  51. Simon R, Priefer U, Puhler A. 1983. A broad host range mobilization system for invivo genetic-engineering - transposon mutagenesis in gram-negative bacteria. Bio-Technol. 1: 784-791.  https://doi.org/10.1038/nbt1183-784
  52. Elliott SJ, Nandapalan N, Chang BJ. 1991. Production of type 1 fimbriae by Escherichia coli HB101. Microb. Pathogenesis. 10: 481-486.  https://doi.org/10.1016/0882-4010(91)90114-P
  53. Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, et al. 2011. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12: 9.