Acknowledgement
This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2022M3A9B6082687) and the Chung-Ang University Research Grants in 2022.
References
- Di Mascio P, Kaiser S, Sies H. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532-538. https://doi.org/10.1016/0003-9861(89)90467-0
- Armstrong GA. 1997. Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu. Rev. Microbiol. 51: 629-659. https://doi.org/10.1146/annurev.micro.51.1.629
- Mein JR, Lian F, Wang XD. 2008. Biological activity of lycopene metabolites: implications for cancer prevention. Nutr. Rev. 66: 667-683. https://doi.org/10.1111/j.1753-4887.2008.00120.x
- Bignotto L, Rocha J, Sepodes B, Eduardo-Figueira M, Pinto R, Chaud M, et al. 2009. Anti-inflammatory effect of lycopene on carrageenan-induced paw oedema and hepatic ischaemia-reperfusion in the rat. Br. J. Nutr. 102: 126-133. https://doi.org/10.1017/S0007114508137886
- Erdman JW, Jr., Ford NA, Lindshield BL. 2009. Are the health attributes of lycopene related to its antioxidant function? Arch. Biochem. Biophys. 483: 229-235. https://doi.org/10.1016/j.abb.2008.10.022
- Story EN, Kopec RE, Schwartz SJ, Harris GK. 2010. An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol. 1: 189-210. https://doi.org/10.1146/annurev.food.102308.124120
- Hernandez-Almanza A, Montanez J, Martinez G, Aguilar-Jimenez A, Contreras-Esquivel JC, Aguilar CN. 2016. Lycopene: progress in microbial production. Trends Food Sci. Technol. 56: 142-148. https://doi.org/10.1016/j.tifs.2016.08.013
- Choudhari SM, Ananthanarayan L, Singhal RS. 2009. Purification of lycopene by reverse phase chromatography. Food Bioprocess Technol. 2: 391-399. https://doi.org/10.1007/s11947-008-0054-1
- Sevgili A, Erkmen O. 2019. Improved lycopene production from different substrates by mated fermentation of Blakeslea Trispora. Foods 8: 120.
- Niu FX, Lu Q, Bu YF, Liu JZ. 2017. Metabolic engineering for the microbial production of isoprenoids: carotenoids and isoprenoid-based biofuels. Synth. Syst. Biotechnol. 2: 167-175. https://doi.org/10.1016/j.synbio.2017.08.001
- Liu XJ, Liu RS, Li HM, Tang YJ. 2012. Lycopene production from synthetic medium by Blakeslea trispora NRRL 2895 (+) and 2896 (-) in a stirred-tank fermenter. Bioprocess Biosyst. Eng. 35: 739-749. https://doi.org/10.1007/s00449-011-0654-4
- Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N. 1994. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces-Cerevisiae. Biosci. Biotechnol. Biochem. 58: 1112-1114. https://doi.org/10.1271/bbb.58.1112
- Farmer WR, Liao JC. 2000. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18: 533-537. https://doi.org/10.1038/75398
- Zhou Y, Nambou K, Wei L, Cao J, Imanaka T, Hua Q. 2013. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnol. Lett. 35: 2137-2145. https://doi.org/10.1007/s10529-013-1317-0
- Kim YS, Lee JH, Kim NH, Yeom SJ, Kim SW, Oh DK. 2011. Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 90: 489-497. https://doi.org/10.1007/s00253-011-3091-z
- Roukas T. 2016. The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Crit. Rev. Biotechnol. 36: 424-433.
- Zhu FY, Lu L, Fu S, Zhong XF, Hu MZ, Deng ZX, et al. 2015. Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem. 50: 341-346. https://doi.org/10.1016/j.procbio.2014.12.008
- Bahieldin A, Gadalla NO, Al-Garni SM, Almehdar H, Noor S, Hassan SM, et al. 2014. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid 72: 18-28. https://doi.org/10.1016/j.plasmid.2014.03.001
- Kang CK, Yang JE, Park HW, Choi YJ. 2020. Enhanced lycopene production by UV-C irradiation in radiation-resistant Deinococcus radiodurans R1. J. Microbiol. Biotechnol. 30: 1937-1943. https://doi.org/10.4014/jmb.2009.09013
- Demissie ZA, Erland LA, Rheault MR, Mahmoud SS. 2013. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase. J. Biol. Chem. 288: 6333-6341. https://doi.org/10.1074/jbc.M112.431171
- Xie F, Niu S, Lin X, Pei S, Jiang L, Tian Y, et al. 2021. Description of Microbacterium luteum sp. nov., Microbacterium cremeum sp. nov., and Microbacterium atlanticum sp. nov., three novel C50 carotenoid producing bacteria. J. Microbiol. 59: 886-897. https://doi.org/10.1007/s12275-021-1186-5
- Hwang CY, Cho ES, Rhee WJ, Kim E, Seo MJ. 2022. Genomic and physiological analysis of C50 carotenoid-producing novel Halorubrum ruber sp. nov. J. Microbiol. 60: 1007-1020. https://doi.org/10.1007/s12275-022-2173-1
- Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N. 1998. Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl. Environ. Microbiol. 64: 1226-1229. https://doi.org/10.1128/AEM.64.4.1226-1229.1998
- Xu X, Tian L, Xu J, Xie C, Jiang L, Huang H. 2018. Analysis and expression of the carotenoid biosynthesis genes from Deinococcus wulumuqiensis R12 in engineered Escherichia coli. AMB Express 8: 94.
- Xu X, Jiang L, Zhang Z, Shi Y, Huang H. 2013. Genome sequence of a gamma- and UV-ray-resistant strain, Deinococcus wulumuqiensis R12. Genome Announc. 1: 3.
- Kim SW, Keasling JD. 2001. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 72: 408-415. https://doi.org/10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H
- Yuan LZ, Rouviere PE, LaRossa RA, Suh W. 2006. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E-coli. Metab. Eng. 8: 79-90. https://doi.org/10.1016/j.ymben.2005.08.005
- Kang MJ, Yoon SH, Lee YM, Lee SH, Kim JE, Jung KH, et al. 2005. Enhancement of lycopene production in Escherichia coli by optimization of the lycopene synthetic pathway. J. Microbiol. Biotechnol. 15: 880-886.
- Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. 2013. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170-174. https://doi.org/10.1038/nbt.2461
- Vadali RV, Fu Y, Bennett GN, San KY. 2005. Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol. Prog. 21: 1558-1561. https://doi.org/10.1021/bp050124l
- Alper H, Miyaoku K, Stephanopoulos G. 2006. Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl. Microbiol. Biotechnol. 72: 968-974. https://doi.org/10.1007/s00253-006-0357-y
- Alanen HI, Walker KL, Lourdes Velez Suberbie M, Matos CF, Bonisch S, Freedman RB, et al. 2015. Efficient export of human growth hormone, interferon alpha2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation. Biochim. Biophys. Acta 1853: 756-763. https://doi.org/10.1016/j.bbamcr.2014.12.027
- Elliott SJ, Nandapalan N, Chang BJ. 1991. Production of type 1 fimbriae by Escherichia coli HB101. Microb. Pathog. 10: 481-486. https://doi.org/10.1016/0882-4010(91)90114-P
- Chasse GA, Mak ML, Deretey E, Farkas I, Torday LL, Papp JG, et al. 2001. An ab initio computational study on selected lycopene isomers. J. Mol. Struc-Theochem. 571: 27-37. https://doi.org/10.1016/S0166-1280(01)00424-9
- Chasse GA, Chasse KP, Kucsman A, Torday LL, Papp JG. 2001. Conformational potential energy surfaces of a Lycopene model. J. Mol. Struc-Theochem. 571: 7-26. https://doi.org/10.1016/S0166-1280(01)00413-4
- Lee SY, Lee KM, Chan HN, Steinbuchel A. 1994. Comparison of recombinant Escherichia coli strains for synthesis and accumulation of poly-(3-hydroxybutyric acid) and morphological changes. Biotechnol. Bioeng. 44: 1337-1347. https://doi.org/10.1002/bit.260441110
- Kim B, Park H, Na D, Lee SY. 2014. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol. J. 9: 621-629. https://doi.org/10.1002/biot.201300263
- Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, et al. 2009. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. J. Biotechnol. 140: 218-226. https://doi.org/10.1016/j.jbiotec.2009.01.008
- Lee PC, Mijts BN, Schmidt-Dannert C. 2004. Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 65: 538-546. https://doi.org/10.1007/s00253-004-1619-1
- Yang J, Guo LJMcf. 2014. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb. Cell Fact. 13: 1-11. https://doi.org/10.1186/1475-2859-13-1
- Yu P, Chen K, Huang X, Wang X, Ren Q. 2018. Production of gamma-aminobutyric acid in Escherichia coli by engineering MSG pathway. Prep. Biochem. Biotech. 48: 906-913. https://doi.org/10.1080/10826068.2018.1514519
- Xu J, Xu X, Xu Q, Zhang Z, Jiang L, Huang H. 2018. Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids. Bioprocess Biosyst. Eng. 41: 489-499. https://doi.org/10.1007/s00449-017-1883-y
- Chiang CJ, Ho YJ, Hu MC, Chao YP. 2020. Rewiring of glycerol metabolism in Escherichia coli for effective production of recombinant proteins. Biotechnol. Biofuels. 13: 205.
- Martinez-Gomez K, Flores N, Castaneda HM, Martinez-Batallar G, Hernandez-Chavez G, Ramirez OT, et al. 2012. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb. Cell Fact. 11: 46.
- Biselli E, Schink SJ, Gerland U. 2020. Slower growth of Escherichia coli leads to longer survival in carbon starvation due to a decrease in the maintenance rate. Mol. Syst. Biol. 16: e9478.
- Terol GL, Gallego-Jara J, Martinez RAS, Vivancos AM, Diaz MC, Puente TD. 2021. Impact of the expression system on recombinant protein production in Escherichia coli BL21. Front. Microbiol. 12: 682001.
- Wang Z, Sun J, Yang Q, Yang J. 2020. Metabolic engineering Escherichia coli for the production of lycopene. Molecules 25: 3136.
- Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462. https://doi.org/10.1126/science.277.5331.1453
- Spratt SK, Ginsburgh CL, Nunn WD. 1981. Isolation and genetic characterization of Escherichia coli mutants defective in propionate metabolism. J. Bacteriol. 146: 1166-1169. https://doi.org/10.1128/jb.146.3.1166-1169.1981
- Qian ZG, Xia XX, Lee SY. 2011. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol. Bioeng. 108: 93-103. https://doi.org/10.1002/bit.22918
- Simon R, Priefer U, Puhler A. 1983. A broad host range mobilization system for invivo genetic-engineering - transposon mutagenesis in gram-negative bacteria. Bio-Technol. 1: 784-791. https://doi.org/10.1038/nbt1183-784
- Elliott SJ, Nandapalan N, Chang BJ. 1991. Production of type 1 fimbriae by Escherichia coli HB101. Microb. Pathogenesis. 10: 481-486. https://doi.org/10.1016/0882-4010(91)90114-P
- Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, et al. 2011. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12: 9.