DOI QR코드

DOI QR Code

Isolation and Characterization of a Salt Inducible Promoter from Chlorella vulgaris PKVL7422

  • Min-Jeong Kim (School of Marine and Fisheries Sciences, Pukyong National University) ;
  • Su-Hyun Kim (School of Marine and Fisheries Sciences, Pukyong National University) ;
  • Najib Abdellaoui (School of Marine and Fisheries Sciences, Pukyong National University) ;
  • Tae-Jin Choi (School of Marine and Fisheries Sciences, Pukyong National University)
  • Received : 2023.04.04
  • Accepted : 2023.04.20
  • Published : 2023.07.28

Abstract

Chlorella is a eukaryotic organism that can be used as an industrial host to produce recombinant proteins. In this study, a salt-inducible promoter (SIP) was isolated from the freshwater species Chlorella vulgaris PKVL7422 from the screening of genes that were upregulated after salt treatment. Several cis-acting elements, including stress response elements, were identified in the isolated SIP. Moreover, the Gaussia luciferase gene was cloned after the SIP and transformed into C. vulgaris to test the inducibility of this promoter. Reexamination of transcriptome of C. vulgaris revealed that genes involved in the synthesis of methyl jasmonic acid (MeJA), gibberellin (GA), and abscisic acid (ABA) were upregulated when C. vulgaris was treated with salt. Furthermore, the expression level of recombinant luciferase increased when the transformed C. vulgaris was treated with salt and MeJA, GA, and ABA. This study represents the first report of the C. vulgaris SIP and highlights how transformed microalgae could be used for robust expression of recombinant proteins.

Keywords

Acknowledgement

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF)& funded by the Korean government (MSIT) (No. 2022M3E5E6079747). This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20210292).

References

  1. Prasad R, Gupta SK, Shabnam N, Oliveira CYB, Nema AK, Ansari FA, et al. 2021. Role of microalgae in global CO2 sequestration: physiological mechanism, recent development, challenges, and future prospective. Sustainability 13: 13061.
  2. Koramutla MK, Negi M, Ayele BT. 2021. Roles of glutathione in mediating abscisic acid signaling and its regulation of seed dormancy and drought tolerance. Genes 12: 1620.
  3. Vazquez-Villegas P, Torres-Acosta MA, Garcia-Echauri SA, Aguilar-Yanez JM, Rito-Palomares M, Ruiz-Ruiz F. 2018. Genetic manipulation of microalgae for the production of bioproducts. Front. Biosci. Elite 10: 254-275. https://doi.org/10.2741/e821
  4. Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, et al. 2014. Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol. Biofuels 7: 128.
  5. Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F. 2013. Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J. Appl. Phycol. 25: 1447-1456. https://doi.org/10.1007/s10811-013-9974-x
  6. Venkata Subhash G, Chugh N, Iyer S, Waghmare A, Musale AS, Nandru R, et al. 2020. Application of in vitro protein solubility for selection of microalgae biomass as protein ingredient in animal and aquafeed. J. Appl. Phycol. 32: 3955-3970. https://doi.org/10.1007/s10811-020-02235-9
  7. Sunstrom NA, Hunt S, Bailey C, Baig M, Sleigh M, Gray P. 2000. Regulated autocrine growth of CHO cells. Cytotechnology 34: 39-46. https://doi.org/10.1023/A:1008194529175
  8. Georgiev MI, Weber J, Maciuk A. 2009. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol. 83: 809-823. https://doi.org/10.1007/s00253-009-2049-x
  9. Kasser L, Harnischfeger J, Salzig D, Czermak P. 2022. The effect of different insect cell culture media on the efficiency of protein production by Spodoptera frugiperda cells. Electron J. Biotechnol. 56: 54-64. https://doi.org/10.1016/j.ejbt.2022.01.004
  10. Barros A, Pereira H, Campos J, Marques A, Varela J, Silva J. 2019. Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Sci. Rep. 9: 13935.
  11. Bolanos-Martinez OC, Malla A, Rosales-Mendoza S, Vimolmangkang S. 2022. Harnessing the advances of genetic engineering in microalgae for the production of cannabinoids. Crit. Rev. Biotechnol. doi: 10.1080/07388551.2022.2071672.
  12. Liang ZC, Liang MH, Jiang JG. 2020. Transgenic microalgae as bioreactors. Crit. Rev. Food Sci. Nutr. 60: 3195-3213. https://doi.org/10.1080/10408398.2019.1680525
  13. Diaz-Santos E, de la Vega M, Vila M, Vigara J, Leon R. 2013. Efficiency of different heterologous promoters in the unicellular microalga Chlamydomonas reinhardtii. Biotechnol. Prog. 29: 319-328. https://doi.org/10.1002/btpr.1690
  14. Zhang MP, Wang M, Wang C. 2021. Nuclear transformation of Chlamydomonas reinhardtii: a review. Biochimie 181: 1-11. https://doi.org/10.1016/j.biochi.2020.11.016
  15. Schroda M, Blocker D, Beck CF. 2000. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J. 21: 121-131. https://doi.org/10.1046/j.1365-313x.2000.00652.x
  16. Niu YF, Zhang MH, Xie WH, Li J, Gao Y, Yang WD, et al. 2011. A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genet. Mol. Res. 10: 3427-3434. https://doi.org/10.4238/2011.October.21.1
  17. Poulsen N, Kroger N. 2005. A new molecular tool for transgenic diatoms: control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J. 272: 3413-3423. https://doi.org/10.1111/j.1742-4658.2005.04760.x
  18. Yun CJ, Hwang KO, Han SS, Ri HG. 2019. The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass Bioenerg. 127: 105277.
  19. Beltran-Aguilar AG, Peraza-Echeverria S, Lopez-Ochoa LA, Borges-Argaez IC, Herrera-Valencia VA. 2019. A novel salt-inducible CrGPDH3 promoter of the microalga Chlamydomonas reinhardtii for transgene overexpression. Appl. Microbiol. Biotechnol. 103: 3487-3499. https://doi.org/10.1007/s00253-019-09733-y
  20. Peethambaran PK, Glenz R, Honinger S, Shahinul Islam SM, Hummel S, Harter K, et al. 2018. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC Plant Biol. 18: 311.
  21. Stiller LM, Galinski EA, Witt EM. 2018. Engineering the salt-inducible ectoine promoter region of Halomonas elongata for protein expression in a unique stabilizing environment. Genes 9: 184.
  22. Abdellaoui N, Kim MJ, Choi TJ. 2019. Transcriptome analysis of gene expression in Chlorella vulgaris under salt stress. World J. Microbiol. Biotechnol. 35: 141.
  23. Kim MJ. 2019. Optimization of microalgae transformation system for recombinant vaccine production (Master dissertation, Pukyong National University).
  24. Hansen KD, Irizarry RA, Wu Z. 2012. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13: 204-216. https://doi.org/10.1093/biostatistics/kxr054
  25. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Mthods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  26. Warning HO, Hachtel W. 2000. Functional analysis of a nitrite reductase promoter from birch in transgenic tobacco. Plant Sci. 155: 141-151. https://doi.org/10.1016/S0168-9452(00)00211-9
  27. Li J, Xue L, Yan H, Wang L, Liu L, Lu Y, et al. 2007. The nitrate reductase gene-switch: a system for regulated expression in transformed cells of Dunaliella salina. Gene 403: 132-142. https://doi.org/10.1016/j.gene.2007.08.001
  28. Solomonson LP, Vennesland B. 1972. Nitrate reductase and chlorate toxicity in Chlorella vulgaris Beijerinck. Plant Physiol. 50: 421-424. https://doi.org/10.1104/pp.50.4.421
  29. Zhu JK. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329
  30. Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P. 2021. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22: 4609.
  31. Sinetova MA, Sidorov RA, Medvedeva AA, Starikov AY, Markelova AG, Allakhverdiev SI, et al. 2021. Effect of salt stress on physiological parameters of microalgae Vischeria punctata strain IPPAS H-242, a superproducer of eicosapentaenoic acid. J. Biotechnol. 331: 63-73. https://doi.org/10.1016/j.jbiotec.2021.03.001
  32. Ren Y, Sun H, Deng J, Huang J, Chen F. 2021. Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Mar. Drugs 19: 713.
  33. Parra-Marin O, Lopez-Pacheco K, Hernandez R, Lopez-Villasenor I. 2020. The highly diverse TATA box-binding proteins among protists: a review. Mol. Biochem. Parasitol. 239: 111312.
  34. Wang C, Peng X, Wang J, Lei A, Li H, Hu Z. 2016. A β-carotene ketolase gene (bkt1) promoter regulated by sodium acetate and light in a model green microalga Chlamydomonasreinhardtii. Algal Res. 20: 61-69. https://doi.org/10.1016/j.algal.2016.09.020
  35. Zou LG, Chen JW, Zheng DL, Balamurugan S, Li DW, Yang WD, Li HY. 2018. High-efficiency promoter-driven coordinated regulation of multiple metabolic nodes elevates lipid accumulation in the model microalga Phaeodactylum tricornutum. Microb. Cell Fact. 17: 54.
  36. Shah S, Li X, Jiang Z, Fahad S, Hassan S. 2022. Exploration of the phytohormone regulation of energy storage compound accumulation in microalgae. Food Energy Secur. 1: e418.
  37. Wang C, Qi M, Guo J, Zhou C, Yan X, Ruan R, et al. 2022. The active phytohormone in microalgae: the characteristics, efficient detection, and their adversity resistance applications. Molecules 27: 46.
  38. Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT. 2015. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol. 168: 343-356. https://doi.org/10.1104/pp.15.00030
  39. Pandit PR, Fulekar M., Karuna MSL. 2017. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environ. Sci. Pollut. Res. 24: 13437-13451. https://doi.org/10.1007/s11356-017-8875-y
  40. Stirk WA, van Staden J. 2020. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol. Adv. 44: 107612.
  41. Tarakhovskaya ER, Maslov YI, Shishova MF. 2007. Phytohormones in algae. Russ. J. Plant Physiol. 54: 163-170. https://doi.org/10.1134/S1021443707020021
  42. Ali HEA, El-fayoumy EA, Rasmy WE, Soliman RM, Abdullah MA. 2021. Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. J. Appl. Phycol. 33: 227-239. https://doi.org/10.1007/s10811-020-02308-9
  43. Gao F, Yang L, Chen A J, Zhou WH, Chen DZ, Chen JM. 2022. Promoting effect of plant hormone gibberellin on co-metabolism of sulfamethoxazole by microalgae Chlorella pyrenoidosa. Bioresour. Technol. 351: 126900.
  44. Asghar MA, Li Y, Jiang H, Sun X, Ahmad B, Imran S, et al. 2019. Crosstalk between abscisic acid and auxin under osmotic stress. Agron. J. 111: 2157-2162. https://doi.org/10.2134/agronj2018.10.0633
  45. Kumar S, Shah SH, Vimala Y, Jatav HS, Ahmad P, Chen Y, et al. 2022. Abscisic acid: metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Front. Plant Sci. 13: 972856.
  46. Ali MS, Baek KH. 2020. Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int. J. Mol. Sci. 21: 621.
  47. Forghani AH, Almodares A, Ehsanpour AA. 2020. The role of gibberellic acid and paclobutrazol on oxidative stress responses induced by in vitro salt stress in sweet sorghum. Russ. J. Plant Physiol. 67: 555-563. https://doi.org/10.1134/S1021443720030073
  48. Koramutla MK, Negi M, Ayele BT. 2021. Roles of glutathione in mediating abscisic acid signaling and its regulation of seed dormancy and drought tolerance. Genes 12: 1620.